





## EU 20 20 20: Tecnologie e Sistemi per le Reti Intelligenti "Smart Grids"

#### Giuliano Monizza



# **About T&D Europe:**The association

- •**T&D EUROPE** is the European association of the electricity transmission and distribution equipment and services industry.
- •Our scope includes the complete range of products and services necessary to transport and distribute electricity in high and medium voltage, between the producers and the end users.
- •The companies represented by T&D Europe account for a production worth over €25 billion, and employ over 200,000 people in Europe



## **About T&D Europe: The Members**

 Members of T&D EUROPE are all relevant European national associations.























## The world in power T&D



## Grid access for large scale renewables



#### **T&D Products and Solutions**

- Worldwide most powerful wind energy plant mass-produced
- Complete solutions for on-shore and off-shore wind power
- Highly-efficient turbines for solarthermal power generation
- Integration of renewable energies via HVDC
- Energy lines with UHVAC and UHVDC
- Gas-insulated lines (GIL)

## US Energy flows- EFFICIENCY FOCUS



Source: University of California, Lawrence Livermore Ntl Labs, DoE. Units in quadrillion BTUs ("quads"); 1 quad = 10<sup>15</sup> BTU = 1.055x10<sup>18</sup>J.

#### **Power Generation**

- The total world generation of electricity: 19'000 TWh in 2006 EU25 accounted for 3'300 TWh.
- Renewable sources: EU target= 20% globally provide some 7% of the electricity generated.
- Fossil fuels cover 70% of worldwide electricity while in Europe the figure is 60%.
- A drastic change in the portfolio of power generation in Europe is required
- Public opinion does not accept a substantial increase in nuclear energy in some countries
- The availability of extra hydro power is limited.
- Renewable energy sources, such as wind, solar energy, biomasses, are expected to increase up to 10-15% of the energy supply in the short and medium term and are not yet, in most cases, economically competitive.



#### Power Generation, Transmission & Distribution

Today's conversion systems from primary energy to useful forms of energy are highly inefficient in many countries

Average power generation efficiency = 33%

but could be higher than 50% with existing technologies.

In the EU, approximately 7% of the generated electricity is lost in the power transmission and distribution.

#### Key technologies trends:

- ➤ Power plants with higher efficiency and controllability
- ➤ CCS (Carbon Capture Storage) & CHP (Combined Heat & Power): Eff> 80%
- >Transmission and distribution grids (HVDC, Facts), "Supergrids",

Transmission: T-Smartgrids

➤ Grid flexibility and reliability, Bulk Power Transmission, Fast change load profile, Bi- directional, ready-to-collect decentralized renewable sources

Distribution: D-Smartgrids

### T&D Contributions to energy efficiency



## 25% ... 30% saving potential in end-user sectors

Findings from ELECTRA report

| Sector                                | Energy<br>consumption<br>(Mtoe) 2005 | Energy Consumption<br>(Mtoe) 2020 (Business<br>as usual) | Energy Saving<br>Potential 2020<br>(Mtoe) | Full Energy Saving<br>Potential 2020 (%) |
|---------------------------------------|--------------------------------------|----------------------------------------------------------|-------------------------------------------|------------------------------------------|
| Households<br>(residential)           | 280                                  | 338                                                      | 91                                        | 27%                                      |
| Commercial<br>buildings<br>(Tertiary) | 157                                  | 211                                                      | 63                                        | 30%                                      |
| Transport                             | 332                                  | 405                                                      | 105                                       | 26%                                      |
| Manufacturing<br>Industry             | 297                                  | 382                                                      | 95                                        | 25%                                      |

Estimates for full energy saving potential in end-use sectors



## The 3 pillars of a sustainable energy system



## Smart Grids - why and what -

## From traditional to smart grids

- Centralized power generation
- One-directional power flow
- Generation follows load
- Top-down operations planning
- Operation based on historical experience

traditional grid



smart grids



- Centralized and distributed power generation
- Multi-directional power flow
- Consumption integrated in system operation
- Operation based on real-time data



## Smart Grids offering

## The portfolio – all over the system!

#### System operation: Network Manager

- SCADA
- SCADA/EMS (incl. WAMS)
- BMS

#### Power generation:

- Network Mgr. SCADA/GMS
- System for
  - thermal
  - hydro
  - solar



## Power transmission and distribution:

- solutions for load flow control and power quality improvement
- substation automation
- Network ManagerSCADA/DMS
- distribution and feeder automation
- distribution communication

#### Power system communication

- optical communication
- radio communication

#### Demand response

- smart metering
- advanced home appliances

drivers

# Improving Grid Reliability



• **Goal**: Automatic isolation and location of faults, very fast service restoration to customers

**Smart Grids** 

- How: Using information from IEDs, sensors and meters to control switchgear and to pinpoint fault location
- Financial drivers

Anie – GIFI – 18 Giugno 2010

- Improved customer satisfaction
- Avoided penalties
- Reduction of operational expenses (e.g. crew costs, tree trimming)
- Solution areas
  - Improved coordination and integration
  - Utilization of advanced metering-infrastructure
  - Outage support

#### **Smart Grids** drivers

## Renewable and Distributed Generation



**Goal**: Ensuring reliable grid operation in systems with high share of generation based on volatile renewable energy (e.g. wind and solar) and maybe economic storage

- **How** (examples):
  - Wind and PV specific protection and control systems
  - Wind and PV specific substations and power electronics
  - HVDC to connect remote wind and solar thermal plants
- **Financial drivers** 
  - Emission reduction
  - Maintaining security of supply despite volatile generation
- Solution areas
  - Improved coordination and integration
    - integrated communication infrastructure
    - distributed generation, energy storage and demand response
  - Outage support
    - restoration switching alternatives
    - peak load shifting to defer generation investments

supporting Smart Grids

#### The need for more Transmission investment

Development of a Pan-European transmission grid requires investments!



#### **Drivers**

- •Rising electricity demand
- Integration and accommodation of renewable energies
- More cross-border energy trade
- •High regional electricity prices
- Energy security concerns
- Stability Improvement

The ENTSO-e countries **need** to invest **22** to **24 Bil. EUR** on their Transmission Network between 2010 -2014

## Structure of the current EU recovery program regarding Electricity and Wind

**T&D Industry** 



Effect of EU recovery program

- 750 M€ for Transmission
- A small portion of 500 M€ from Wind

0€

### **Structure of the Smart Grids**



# 3 forces are needed to enable the future sustainable energy system

Climate-compatible energy technologies Efficiency increase, CO2 sequestration, wind, solar thermal ...

#### Technology push

- R&D funding for key technologies
- Funding for full-scale demo projects
- Fair risk sharing between suppliers, operators and the public

### Market pull

- Reliable long-term investment incentives
- Global perspectives for equipment suppliers
- Grow public acceptance & awareness

## Legal basis and acceptance

- EU and national legislation for geological storage
- Public relations in an open dialogue
- Cooperation of politics, industry, NGOs

Only through joint forces of politics, power sector and industry sustainable energy systems can become reality.



## T&D EUROPE

#### the voice that drives consensus

on Transmission & Distribution Technologies

