WORKSHOP

PRESTAZIONI ENERGETICHE ED EVOLUZIONE DEL MERCATO RESIDENZIALE

Esperienza imprenditoriale di edilizia residenziale ad alta prestazione energetica: Residenza Arcadia – Alba (CN)

Relatore: Mario Giletta

Residenza Arcadia – Alba (CN) caratteristiche del fabbricato

Edificio di 5-6 piani fuori terra 88 alloggi, 95 box e cantine PEC di 600 alloggi approvato nel 1997 Progetto definitivo presentato nel 2006-2007

Residenza Arcadia caratteristiche del fabbricato

Vincoli urbanistici

- Facciate esterne in cls splittato
- Tetti in alluminio preverniciato
- Scale condominiali esterne al fabbricato

Vincoli di mercato

 Area di nuovo impianto, prezzi di vendita medi (< 2.000,00 €/mq)

Vincoli legislativi

 Progetto municipale realizzato negli anni 2006-2007 in concomitanza con l'entrata in vigore del D. Lgs 311/06

Strategie per differenziarsi dalla concorrenza

OBIETTIVO INIZIALE: Realizzazione di un edificio energeticamente efficiente che preveda

- **superamento dei** i valori limiti imposti dal D. Lgs 311/06 per l'**anno 2010** (57.30 kWh/m²a)
- costi reali che consentano di mantenere inalterati i prezzi di vendita

Strategie per differenziarsi dalla concorrenza

In fase di redazione del progetto esecutivo, anno 2007, entrata in vigore dello **Stralcio di Piano per il riscaldamento e la climatizzazione** che impone, per fabbricati con volumetria > 10.000 m³, il valore limite di **35 kWh/m²a**

OBIETTIVO FINALE RAGGIUNTO:
abbattimento del valore di fabbisogno energetico
dell'edificio -17 kWh/m²a (+51% rispetto alla Norma)

ANNI 1999-2002

Primi edifici realizzati con l'uso di:

- sughero autoclavato, fibra di legno e fibra di lino come materiali da isolamento
- disgiuntori per l'eliminazione di campi elettromagnetici a bassa frequenza

ANNO 2004

Nell'ambito del programma Case così viene effettuata

 la prima Certificazione energetica volontaria Fabbisogno energetico: 42 kWh/m²a
 Ente Certificatore I.C.M.Q.

Esperienze pregresse criticità riscontrate

- Pluralità di soggetti nel campo della progettazione
- architettonica
- strutturale
- impiantistica
- Assenza di una figura che coordini le fasi di progettazione
- Assenza di una figura che si occupi della definizione dei particolari costruttivi e dell'individuazione dei materiali

Aumento di costi

9

tempi

di esecuzione

per l'impresa

SOLUZIONI ENERGETICHE INTEGRATE

Residenza Arcadia progettazione energetica integrata

STRATEGIA:

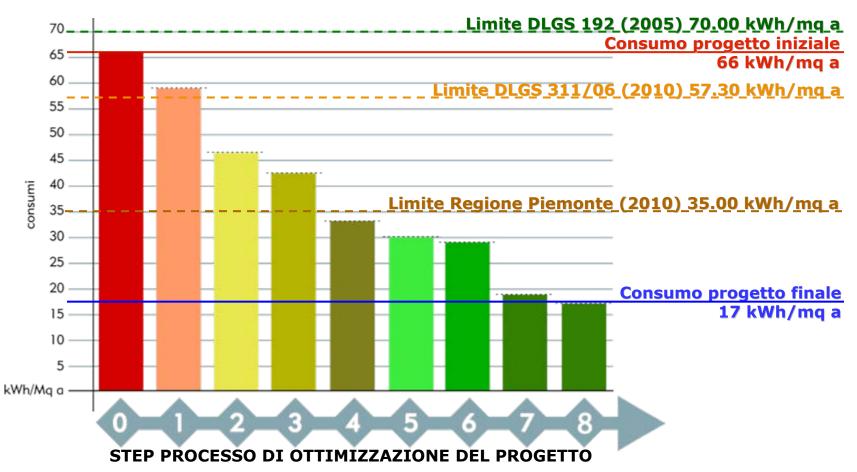
Scelta di una società esterna con competenze multidisciplinari che si occupi di

- Analisi energetiche
- Progettazione impiantistica
- Coordinamento delle fasi di progettazione architettonica e strutturale
- Redazione dettagli costruttivi e selezione materiali

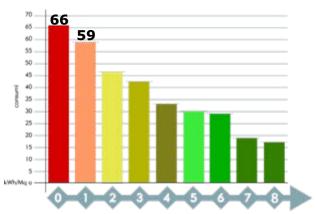
OBIETTIVO: definizione di **soluzioni tecniche** e tecnologiche **cantierabili** e **a basso costo**

Residenza Arcadia progettazione energetica integrata

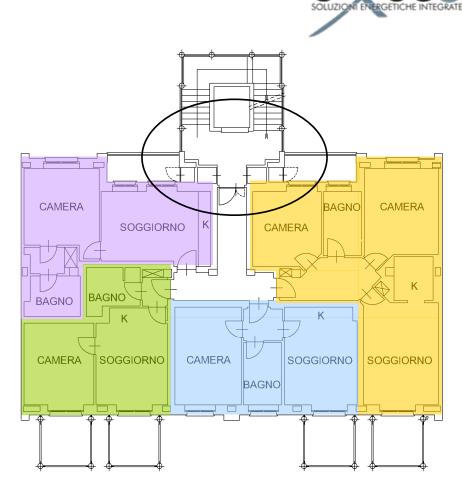
METODOLOGIA SVILUPPATATA con


- 1° investire sull'efficienza energetica dell' involucro edilizio per accrescere il Know How e le competenze specifiche dell'impresa
- 2° definire una progettazione impiantistica semplice
- che consenta il raggiungimento delle prestazioni desiderate nel rispetto dei costi prefissati;
- che preveda semplicità gestionale e bassi costi di manutenzione.

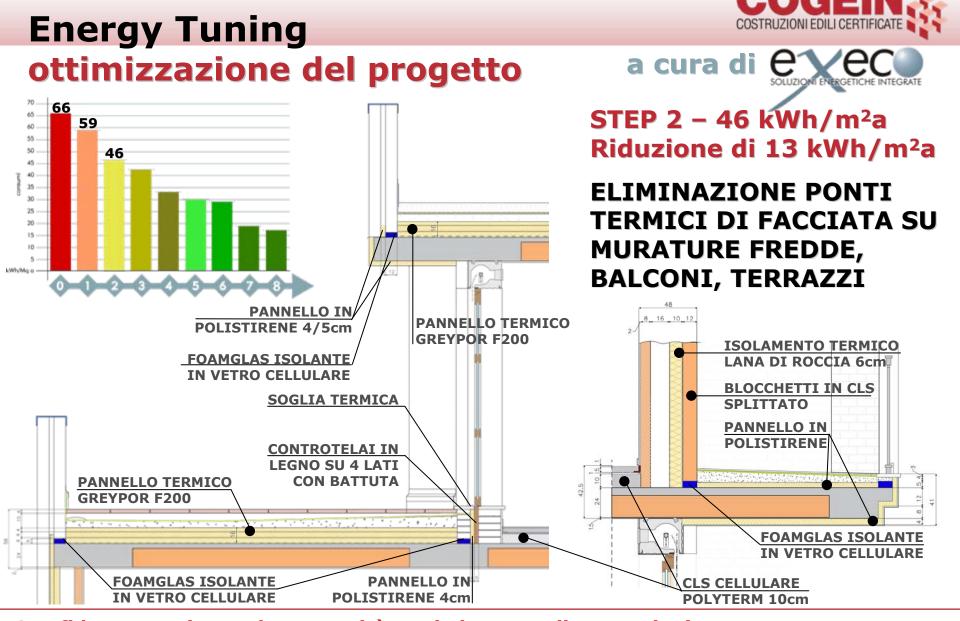
Energy Tuning ottimizzazione del progetto



CONSUMO ANNUO ENERGIA PRIMARIA



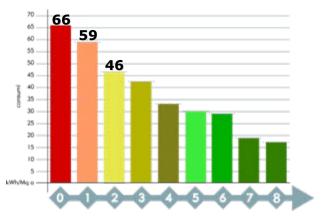
ottimizzazione del progetto



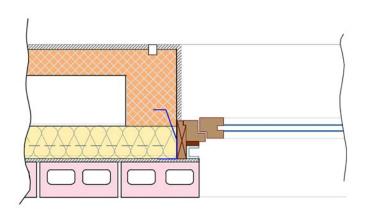
STEP 1 - 59 kWh/m²a Riduzione di 7 kWh/m²a

CHIUSURA DEI DISIMPEGNI INTERNI RISPETTO ALLA SCALA ESTERNA con SERRAMENTI Uw=1,4 W/m²k ED ELIMINAZIONE PONTI TERMICI CAVEDI

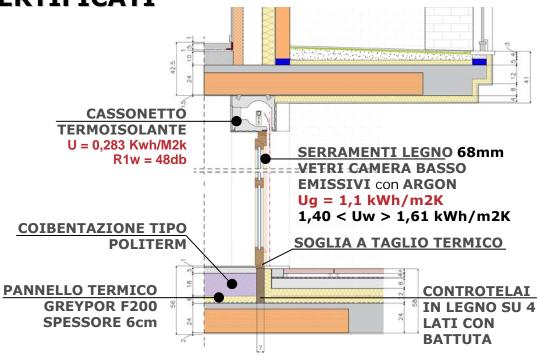
a cura di



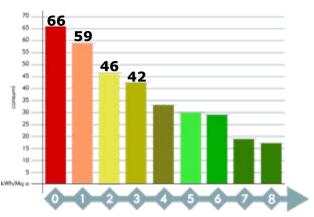
Energy Tuning ottimizzazione del



ottimizzazione del progetto



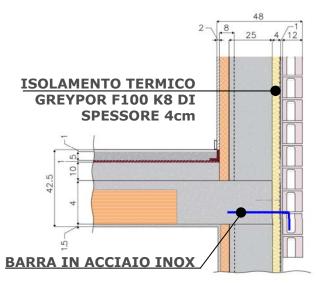
STEP 2 - 46 kWh/m²a Riduzione di 13 kWh/m²a

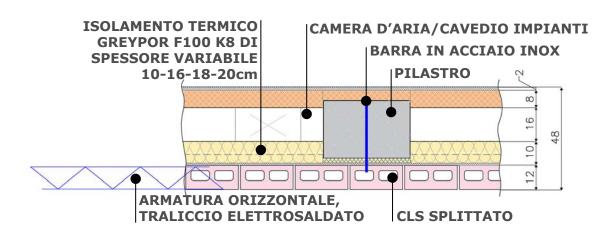

ELIMINAZIONE PONTI TERMICI SU SERRAMENTI, CAMBIO CONTROTELAI, USO DI CASSONETTI COIBENTATI E CERTIFICATI

STEP 3 – 42 kWh/m²a Riduzione di 4 kWh/m²a

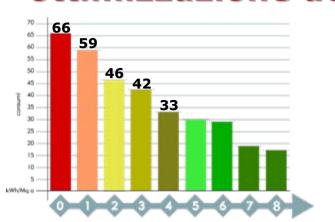
INCREMENTO COIBENTAZIONI IN LANA DI ROCCIA

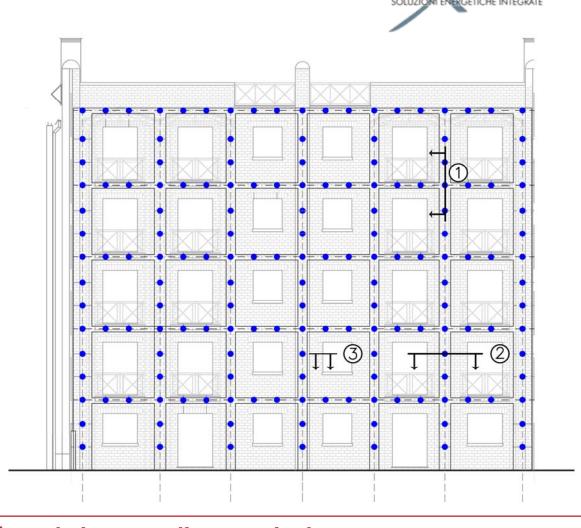
- del SOLAIO PIANO TERRENO da 6 a 10 cm;
- del SOLAIO DI COPERTURA da 6 a 12 cm;
- della TERRAZZA ULTIMO SOLAIO ABITABILE da 6 a 12 cm.


ottimizzazione del progetto



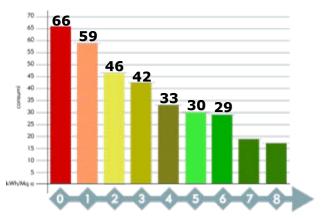
STEP 4 - 33 kWh/m²a Riduzione di 9 kWh/m²a


INCREMENTO COIBENTAZIONI
PARETI VERTICALI da 6 a 10 cm,
ANNULLAMENTO PONTI TERMICI
SOLAI E PILASTRI SU
MURATURA CASSAVUOTA


Energy Tuning ottimizzazione del progetto

STEP 4 - 33 kWh/m²a Riduzione di 9 kWh/m²a

ANCORAGGIO ALLA STRUTTURA IN C.A. DELLA PARETE ESTERNA IN BLOCCHETTI DI CLS SPLITTATO



a cura di

COGEN COSTRUZIONI EDILI CERTIFICATE

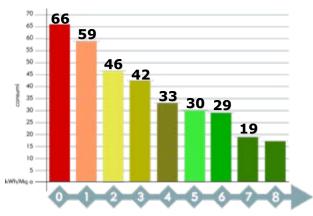
ottimizzazione del progetto

STEP 5 - 30 kWh/m²a Riduzione di 3 kWh/m²a

VARIAZIONE COIBENTAZIONE PARETI ESTERNE: DA LANA DI ROCCIA A PANNELLI DI POLISTIRENE ESPANSO SINTERIZZATO ADDIZIONATO CON GRAFITE TRASMITTANZA λ=0,031

STEP 6 - 29 kWh/m²a Riduzione di 1 kWh/m²a

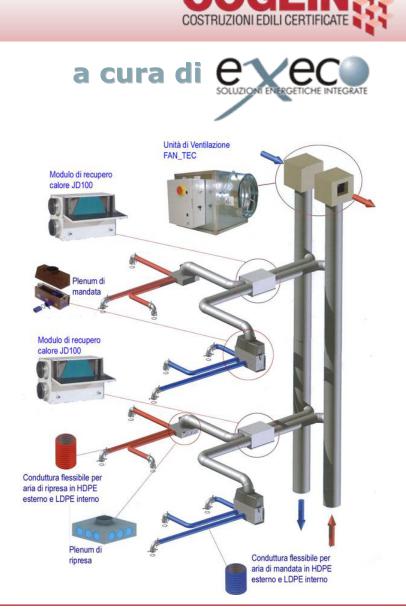
VARIAZIONE COIBENTAZIONE SOLAI DI COPERTURA E TERRAZZI: DA LANA DI ROCCIA A PANNELLI DI POLISTIRENE ESPANSO SINTERIZZATO ADDIZIONATO CON GRAFITE TRASMITTANZA λ =0,031


COGEIN COSTRUZIONI EDILI CERTIFICATE

ottimizzazione del progetto

- Definizione soluzioni impiantistiche:
- teleriscaldamento con contabilizzazione individuale e lettura da remoto;
- impianto radiante a bassa temperatura con corpi scaldanti in acciaio (proposto in variante impianto a pavimento tipo Velta Calor);
- inserimento dell'impianto solare termico per garantire bassi consumi di acqua calda sanitaria ed ottimizzare la certificazione energetica;
- inserimento dell'impianto di ventilazione meccanica controllata ad altissima efficienza, ≥93%, per garantire elevato confort abitativo interno.
- Definizione dei capitolati tecnici e delle caratteristiche dei materiali da utilizzare.

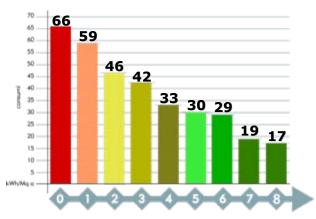
ottimizzazione del progetto



STEP 7 19 kWh/m²a

Riduzione di 10 kWh/m²a

VENTILAZIONE MECCANICA CONTROLLATA


Impianto costituito da mandata e ripresa condominiali e recuperatori individuali: manutenzione dei filtri personalizzata per ogni alloggio

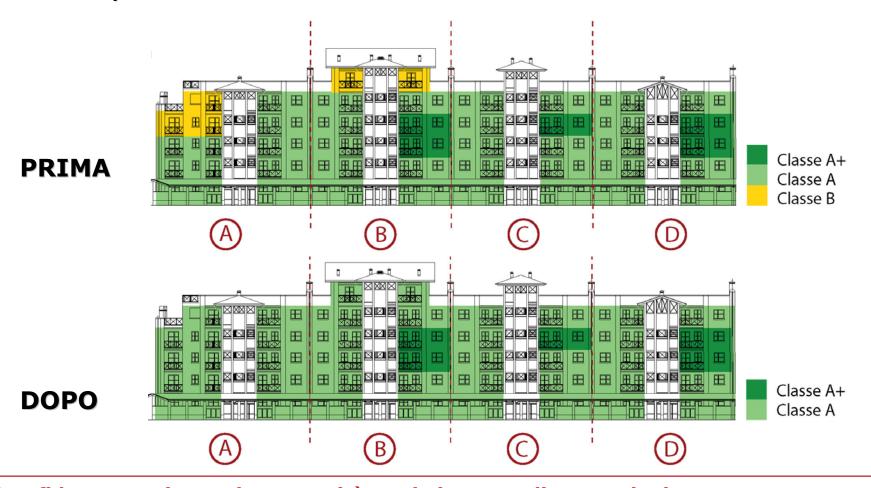
COGEIN COSTRUZIONI EDILI CERTIFICATE

ottimizzazione del progetto

STEP 8 - 17 kWh/m²a Riduzione di 2 kWh/m²a

BILANCIAMENTO ENERGETICO INVOLUCRO

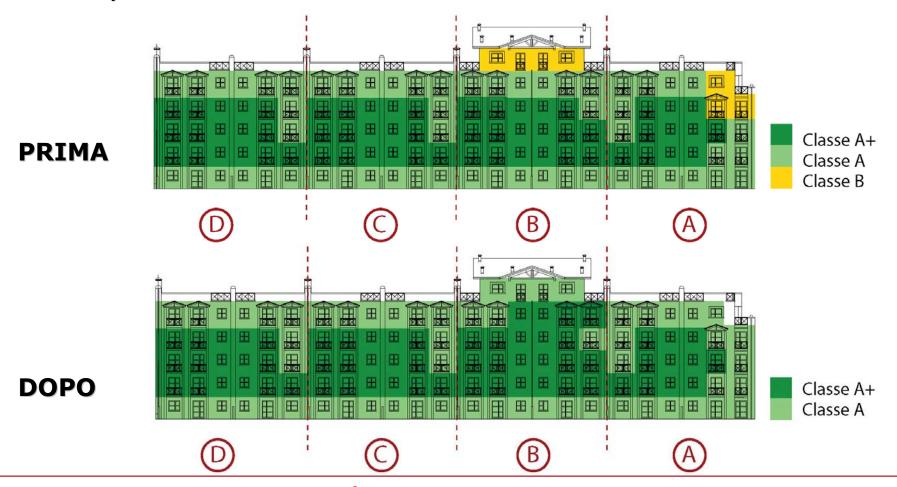
AUMENTO SPESSORI ISOLAMENTI
PARETI ESTERNE (da 10 a 16-18-20cm)
E SOLAI DI COPERTURA LOCALI
RISCALDATI (da 12 a 16-20cm) PER
ALCUNI APPARTAMENTI


 Le analisi energetiche hanno riscontrato, a causa dell'esposizione del fabbricato, differenze significative di fabbisogno energetico per alcuni alloggi.

COGEIN COSTRUZIONI EDILI CERTIFICATE

ottimizzazione del progetto

STEP 8, PROSPETTO EST DEL FABBRICATO



COSTRUZIONI EDILI CERTIFICATE

ottimizzazione del progetto

STEP 8, PROSPETTO OVEST DEL FABBRICATO

	SCALA B	riscaldamento	acqua calda sanitaria	L.R. 13/07	D. Lgs 311/06	
	unità	consumo	fabbisogno	Epi progetto	Epi progetto	
ir	nmobiliari	involucro		Limite 35	Limite2008 Limite2010	
		(kWh/m²)	(kWh/m²a)	(kWh/m²a)	(kWh/m²a)	(kWh/m²a)
1	BO_DX	22	8	24	84	74
2	BO_SX	23	8	25	84	74
3	BO_DX1	14	8	16	78	69
4	BO_SX1	14	8	16	78	69
5	B1_DX	19	8	21	60	53
6	B1_DX1	9	8	10	45	41
7	B1_C	10	8	11	50	45
8	B1_SX	14	8	16	53	48
9	B2_DX	12	8	14	51	46
10	B2_SX	19	8	21	53	48
11	B2_C	11	8	12	48	44
12	B3_DX	13	8	14	51	46
13	B3_SX	14	8	15	53	48
14	B3_C	11	8	12	48	44
15	B4_DX	15	8	16	64	57
16	B4_SX	21	8	23	74	66
17	B4_C	11	8	12	58	52
18	B5_DX	24	8	27	106	93
19	B5_SX	23	8	25	98	86
EDI	FICIO	15	8	17	63	56

Miglioramento rispetto al D.LGS 311/06-2010 +70%

Miglioramento rispetto a L.R. 13/07 +51%

Classificazione energetica confronto Legge Regionale e Normativa Nazionale

SCALA B		classe Nazionale		classe Regionale	
unità				EpiL Torino	
iı	mmobiliari	%	globale	(kWh/m²a)	globale
1	BO_DX	0,33	Agl	38	Α
2	B0_SX	0,33	Agl	39	Α
3	BO_DX1	0,22	Agl+	29	Α
4	BO_SX1	0,22	Agl+	29	Α
5	B1_DX	0,39	Agl	34	Α
6	B1_DX1	0,25	Agl+	22	A+
7	B1_C	0,24	Agl+	23	A+
8	B1_SX	0,33	Agl	28	Α
9	B2_DX	0,30	Agl	26	A+
10	B2_SX	0,43	Agl	34	Α
11	B2_C	0,25	Agl+	25	A+
12	B3_DX	0,30	Agl	26	A+
13	B3_SX	0,32	Agl	28	Α
14	B3_C	0,25	Agl+	24	A+
15	B4_DX	0,28	Agl	29	Α
16	B4_SX	0,34	Agl	37	Α
17	B4_C	0,24	Agl+	25	A+
18	B5_DX	0,29	Agl	41	Α
19	B5_SX	0,29	Agl	40	Α
EDIFICIO		0,30	Agl	30	Α

```
CLASSIFICAZIONE SECONDO LINEE GUIDA NAZIONALI allegato 4 (allegato A, paragrafo 7.2)

AgI+ < 0,25 EpiL (2010) + 9 kWh/m²a

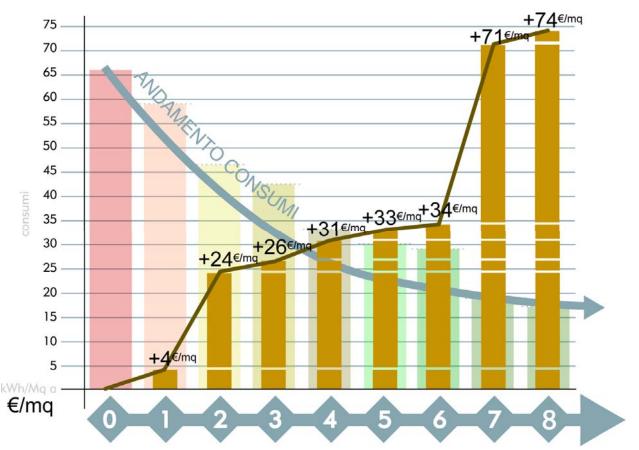
0,25 EpiL (2010) + 9 kWh/m²a ≤ AgI < 0,50 EpiL (2010) + 9 kWh/m²a

0,50 EpiL (2010) + 9 kWh/m²a ≤ BgI < 0,75 EpiL (2010) + 12 kWh/m²a

0,75 EpiL (2010) + 12 kWh/m²a ≤ CgI < 1,00 EpiL (2010) + 18 kWh/m²a

1,00 EpiL (2010) + 18 kWh/m²a ≤ DgI < 1,25 EpiL (2010) + 21 kWh/m²a

1,25 EpiL (2010) + 21 kWh/m²a ≤ EgI < 1,50 EpiL (2010) + 24 kWh/m²a


1,75 EpiL (2010) + 24 kWh/m²a ≤ FgI < 2,50 EpiL (2010) + 30 kWh/m²a

2,50 EpiL (2010) + 30 kWh/m²a ≤ GgI
```

```
CLASSE A+ CLASSE A CLASSE B CLASSE C CLASSE D CLASSE E CLASSE F
```

Costi, incrementi per step di ottimizzazione

- STEP1 chiusura disimpegni interni
- STEP2 eliminazione ponti termici facciate e serramenti
- STEP3 incremento spessore coibentazioni
- STEP4 eliminazione ponti termici solai e pilastri
- STEP5 sostituzione isolamenti pareti
- STEP6 sostituzione isolamenti copertura
- STEP7 ventilazione meccanica controllata
- STEP8 bilanciamento involucro

Le risposte del mercato immobiliare

- Scarsa informazione, il mercato è poco preparato a recepire le potenzialità degli aspetti energetici
- L'utente apprezza le differenze in modo immediato quando verifica personalmente il confort abitativo interno
- Risposte differenti dalle diverse fasce di utenti cui corrispondono precise tipologie del prodotto "casa"

"L'approccio energetico" non si dimostra efficace come meccanismo per anticipare le vendite

Le risposte del mercato immobiliare

In prospettiva, con la diffusione delle certificazioni energetiche sugli alloggi in vendita e in locazione, il mercato delle case ad "alto consumo" perderà di valore,

il mercato delle case a "basso consumo" e di ottima qualità edilizia manterrà il proprio valore nel tempo.

Possibilità concreta di sensibilizzare ed orientare il mercato all'acquisto:

promuovere

campagne di comunicazione specifiche congiunte tra i diversi operatori che condividono l'approccio energetico quale valore aggiunto

per migliorare il confort abitativo degli edifici.

Residenza Arcadia, le risposte del mercato immobiliare

- Vendite effettuate 40% con uno stato di avanzamento dei lavori pari al 65%
- Lo studio delle tematiche energetiche e l'accrescimento del know how dell'impresa hanno contribuito alla sottoscrizione di due importanti contratti di appalto conto terzi.

COGEIN si occuperà, non solo della realizzazione delle opere, ma anche dell'analisi energetica, della progettazione impiantistica e della definizione dei particolari costruttivi.

