Dipartimento di Scienza e Tecnologie dell'Ambiente Costruito Building & Environment Science & Technology BEST UdR BE GROUP Building Envelope Engineering Group

POLITECNICO DI MILANO

Casa PASSIVA, Mariano Comense Simulazioni energetiche dinamiche

PREMESSA

Il presente rapporto rappresenta il documento finale contenente le valutazioni in regime dinamico del comportamento (invernale e estivo) relativo alla costruzione sita in Mariano Comense.

Per la realizzazione delle ipotesi di calcolo sono stati elaborati modelli matematici in modo da rappresentare le caratteristiche termofisiche dell'involucro sulla base di quanto discusso e analizzato, con riferimento ai documenti [1] e [2].

Preme sottolineare come per arrivare al progetto finale, analizzato nella presente relazione, sono state eseguite varie analisi di ottimizzazione dell'involucro, riportate in una serie di documenti precedenti [4,5,6].

È necessario sottolineare che i risultati per il bilancio invernale nonché per le stime di potenze istantanee riportate nel seguente documento sono indicative in riferimento alle ipotesi di carichi interni e gestione dell'edificio secondo quanto riportato.

I valori riportati non hanno valore ai fini della certificazione energetica standardizzata.

Per quanto concerne la descrizione del comportamento estivo dell'edificio è stata nostra intenzione valutare fondamentalmente un comportamento in "free-running", ipotizzando una ventilazione naturale (senza impianto); tuttavia sono state fatte delle valutazioni di massima per la stima del fabbisogno estivo e la stima di potenza che potrebbero essere utili agli impiantisti in termini qualitativi.

© BEGroup – Building Envelope Group Dipartimento BEST Politecnico di Milano

Autore del documento: Giorgio Pansa

BEGroup — Building Envelope Group
Referente scientifico
Sergio Croce Sergio Croce [Ingegnere, Politecnico di Milano]
Gruppo di lavoro
Enrico De Angelis [Ingegnere, Politecnico di Milano]
Tiziana Poli [Architetto, Politecnico di Milano]
Luca Pietro Gattoni [Ingegnere, Politecnico di Milano]
Matteo Fiori [Ingegnere, Politecnico di Milano]
Riccardo Arlunno [Ingegnere, Politecnico di Milano]
Giorgio Pansa [Ingegnere, Politecnico di Milano]
Andrea Giovanni Mainini [Ingegnere, Politecnico di Milano]

IMPOSTAZIONI DEL PROGETTO

Il software di simulazione utilizzato è EnergyPlus. Tale programma permette di simulare il comportamento energetico di un edificio in regime dinamico.

Ipotesi per il modello dinamico

Il modello matematico è caratterizzato da 4 zone termiche differenti, analizzate contemporaneamente per gestire meglio l'influenza reciproca dei diversi ambienti con caratteristiche sensibili differenti.

Si sono create dunque le seguenti zone:

- zona termica "residenza", relativa al blocco residenza fuori terra, costituita da due piani, avente superficie netta pari a circa 105 m²;
- zona termica "interrato", relativa agli ambienti seminterrati riscaldati, di superficie netta pari a circa 64 m²;
- zona termica "atrio", relativa allo spazio in doppia altezza e ai corridoi dei due piani fuori terra, avente superficie netta pari a circa 98 m²;
- zona termica "autorimessa", costituita dal garage (e locali tecnici) [zona termica non riscaldata]

Principali dati geometrici:

Rapporto S/V: 0.63 1/m Superficie utile: 267.05 m²

La presenza dello schermo di copertura è stata opportunamente considerata nel modello di calcolo; la presenza della facciata ventilata è stata presa in considerazione attraverso un incremento della trasmittanza termica.

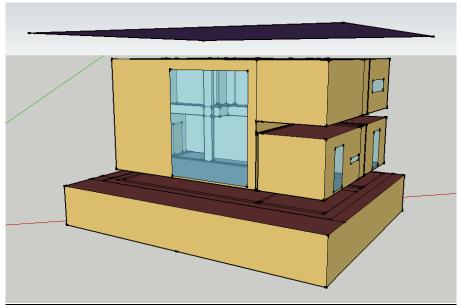


Figura 1: Rappresentazione del modello geometrico 3D utilizzato per la simulazione energetica

Costanti di calcolo

Per le valutazioni di tipo dinamico sono stati considerati costanti:

- gli schedule di occupazione e carichi interni riportati negli allegati (considerando circa 9 W/m² in soggiorno e cucina, e 3 W/m² negli altri locali come valori medi giornalieri per la residenza, secondo quanto indicato nella UNI TS 11300-1);
- i ricambi d'aria (considerati 0.12 vol/h nella stagione invernale¹ e 0.50 vol/h nella stagione estiva, considerata dal 15 aprile al 14 ottobre)
- infiltrazioni d'aria: assenti
- la geometria ed estensione delle differenti superfici dell'involucro;
- l'orientamento dell'edificio:
- la stratigrafia delle chiusure opache (vedi riferimento annessi A)
- i dati climatici desunti dal database METEONORM e relativi alla città di Milano Linate (dati orari utilizzati per le simulazioni);
- temperatura media del terreno: fluttuante tra -2.21 e 25.69 °C (secondo la correlazione di Kasuda).

Variabili

Per meglio delineare la sensibilità del progetto sono state eseguite delle ipotesi di varianti:

- sull'involucro (prevalentemente serramenti e copertura);
- sulla gestione dei carichi interni

Il caso presentato in questo Rapporto riporta le indicazioni stratigrafiche adottate in fase di progetto e concordate con il progettista, illustrate negli Annessi A1 e A2.

Si rimanda alla specifica documentazione per l'analisi delle varianti eseguite. [4,5,6]

Nella tabella 1 e 2 seguenti sono riportate le specifiche delle simulazioni eseguite, con il riferimento relativo agli annessi riportati in appendice al presente documento, nello specifico:

Tabella 1: elenco simulazioni invernali

ANNESSO INV	Note	CASO BASE INVERNALE
1	Т	Stima delle potenze necessarie

Tabella 2: elenco simulazioni estive

ANNESSO EST		Note
1	Impianto di	Stima delle potenze necessarie
	condizionamento	·
	sempre acceso	
2	Temperatura free-	Stima del comfort
	running	

¹ Il valore di ricambi orari 0.12 è ottenuto tramite un recuperatore di calore, secondo quanto riportato nel documento di calcolo Casa Clima [2]. Nella stagione estiva si esclude quindi il funzionamento del recuperatore.

RISULTATI DELLE SIMULAZIONI

Simulazioni invernali

La tabella seguente riporta il risultato della simulazione relativa al "caso base invernale".

Tale risultato è stato raggiunto attraverso varie simulazioni, non riportate nel presente documento di sintesi. Da tali simulazioni è emerso in sostanza come:

- I carichi interni giocano un ruolo fondamentale nel bilancio: dalla loro esatta stima dipende fortemente il risultato finale;
- Per ridurre il fabbisogno energetico, è possibile andare ad agire sostanzialmente sulla soluzione di facciata vetrata: sia aumentando il fattore solare sia diminuendo la trasmittanza termica si ottengono significativi benefici.

Tabella 2: risultati della simulazione (riferiti ad entrambe le zone: Residenza + Interrato)

ANNESSO	Fabbisogno energia utile medio [kWh/m²a]	Stima potenza di riscaldamento – massima[kW]
INV 1	9.83	3.05

È stata inoltre analizzata la presenza della copertura aggettante, che risulta comportarsi come schermo alla radiazione solare nella stagione estiva e, in parte, nella stagione invernale. Si è cercato quindi il miglior compromesso tra la massimizzazione dell'effetto schermante in estate e la minimizzazione della riduzione degli apporti solari in inverno. A tal fine, sono state condotte alcune simulazioni utilizzando il software Ecotect

Simulazioni estive

Nella stagione estiva, è possibile osservare come, attraverso opportune **schermature**, sia possibile ridurre notevolmente le temperature interne, assicurando maggiori garanzie di comfort².

Per avere tuttavia un controllo ottimale del clima interno, potrebbe essere opportuno lo studio e la progettazione di un sistema automatizzato di controllo delle schermature, essendo questo un elemento molto sensibile.

Si è visto come anche per la stagione estiva valga il discorso relativo alla sensibilità ai carichi interni; si è dimostrato inoltre l'incidenza della ventilazione naturale (eventualmente attuabile nelle ore notturne), la quale porta a notevoli benefici in termini di comfort interno.

² Preme sottolineare come non siano state eseguite in questa sede alcuna analisi in termini di carichi latenti.

Qualora si dovesse operare con un impianto di climatizzazione, si è visto infine come anche in questo caso il fabbisogno di potenze di raffrescamento risulta essere piuttosto limitato, dell'ordine di grandezza del fabbisogno di potenze di riscaldamento.

CONCLUSIONI

Le analisi dinamiche hanno dimostrato un ottimo comportamento dell'edificio, sia in regime invernale sia in regime estivo.

Attraverso un'<u>ottimizzazione</u> della progettazione dell'involucro e della gestione dell'edificio, è stato possibile ridurre in maniera consistente il fabbisogno di energia utile per il riscaldamento, arrivando fino al di sotto dei 10 kWh/m²anno. In particolare, tale obiettivo è stato raggiunto attraverso l'elevato isolamento dell'involucro opaco, l'utilizzo di un sistema di recupero associato alla ventilazione meccanica, e la progettazione accurata degli apporti solari.

...IN DEFINITIVA:

L'edificio modellato riscontra quei paradigmi progettuali caratteristici di una CasaClima.

Una CasaClima³è caratterizzata da un alto grado di isolamento termico e da una struttura compatta. Il sole ed il suo calore fanno parte del concetto edile di una CasaClima: l'energia solare viene conservata soprattutto grazie a finestre isolanti che accolgono la luce ma non permettono fuoriuscite di calore. Ove possibile, devono essere evitati ponti termici. Le CasaClima sono contraddistinte da un'impiantistica ottimale, una realizzazione accurata e da grande comfort abitativo.

Elementi di base di una CasaClima sono:

- una struttura compatta
- un alto grado di isolamento termico della superficie esterna
- finestre altamente isolanti
- ermeticità
- assenza di ponti termici
- utilizzo dell'energia solare
- impiantistica ottimale
- realizzazione accurata

RIFERIMENTI

- [1] Tavole architettoniche (ultimo aggiornamento: settembre 2008)
- [2] Relazione di calcolo Casa Clima
- [3] Manuale di utilizzo EnergyPlus
- [4] Primo rapporto di calcolo: 080326 BeGroup Casa Passiva (Mariano Comense)
- [5] Secondo rapporto di calcolo: 080407 BeGroup_Casa Passiva_integrazione (modifica orientamento)
- [6] Terzo rapporto di calcolo: 080507 BeGroup_Casa Passiva_integrazione (analisi serramento)

³ Fonte: http://www.agenziacasaclima.it/it/casaclima/casaclima/carateristiche-di-una-casaclima.html

ANNESSI

- annessi A: relativi alle stratigrafie adottate e alla caratterizzazione dell'edificio
- annessi INV: relativi alle simulazioni invernali
- annessi EST: relativi alle valutazioni estive

Stratigrafie_chiusure opache

Per quanto riguarda le stratigrafie, ci si è attenuti a quelle fornite, in riferimento al documento Casa Clima [2].

	strati	s [m]	$\lambda [W/mK]$	λ [kJ/hmK]	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.040
isolante polistirene	1	0.250	0.036	0.1296	25	1400	6.944
blocco laterizio 30 cm	2	0.300	0.156	0.5616	550	800	1.923
intonaco int (gesso)	3	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.130
	sp. tot	0.570					
	resistenza te	rmica			R	9.066	$[m^2K/W]$
	trasmittanza t	ermica			U	0.110	$[W/m^2K]$

PARETE_tipo 2	(ventilata strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.130
isolante polistirene (ventil)	1	0.250	0.045	0.162	25	1400	5.556
blocco laterizio 30 cm	2	0.300	0.156	0.5616	550	800	1.923
intonaco int (gesso)	3	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.130
	sp. tot	0.570					
r	esistenza te	rmica			R	7.767	$[m^2K/W]$
tra	smittanza t	ermica			U	0.129	[W/m ² K]

PARETE_tipo 3	(cantina	(cantina vs esterno)								
	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]			
	he	-	-	-	-	-	0.040			
isolante polistirene	1	0.250	0.036	0.1296	25	1400	6.944			
cemento armato	2	0.200	2.3	8.28	2400	1000	0.087			
intonaco int (gesso)	3	0.020	0.7	2.52	1200	1000	0.029			
	hi	-	-	-	-	-	0.130			
	sp. tot	0.470								
	resistenza te	rmica			R	7.230	[m ² K/W]			
	trasmittanza t	ermica			U	0.138	[W/m²K]			

	strati	s [m]	λ [W/mK]	$\lambda [\text{kJ/hmK}]$	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.130
isolante polistirene	1	0.300	0.036	0.1296	25	1400	8.333
cemento armato	2	0.200	2.3	8.28	2400	1000	0.087
intonaco int (gesso)	3	0.020	0.7	2.52	1200	1000	0.029
	hi sp. tot	- 0.520	-	-	-	-	0.130
	resistenza tei	rmica			R	8.709	[m ² K/W]
	trasmittanza to	ermica			U	0.115	[W/m ² K]

	strati	s [m]	λ [W/mK]	$\lambda \text{[kJ/hmK]}$	$\rho[\text{kg/m}^3]$	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	-
isolante polistirene	1	0.240	0.036	0.1296	25	1400	6.667
cemento armato	2	0.200	2.3	8.28	2400	1000	0.087
intonaco int (gesso)	3	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.130
	sp. tot	0.460					
	resistenza te	rmica			R	6.912	[m ² K/W]
	trasmittanza t	ermica			U	0.145	[W/m ² K]

	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.130
intonaco interno	1	0.020	0.7	2.52	1200	1000	0.029
tavolato 8 cm	2	0.080	0.4	1.44	1800	800	0.200
intonaco interno	3	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.130
		0.120					
	resistenza te	ermica			R	0.517	[m ² K/W]
	trasmittanza	termica			U	1.934	[W/m ² K]

PORTONE	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	$\rho[\text{kg/m}^3]$	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.040
legno	1	0.050	0.06	0.216	680	1200	0.833
	hi	-	-	-	-	-	0.130
		0.050					
	resistenza te	ermica			R	1.003	[m²K/W]
	trasmittanza 1	termica			U	0.997	$[W/m^2K]$

SOLAIO ESTERNO CO	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	$\rho[\text{kg/m}^3]$	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.040
calcestruzzo	1	0.050	1.6	5.76	2000	840	0.031
isolante polistirene	2	0.290	0.036	0.1296	25	1400	8.056
solaio PLASTBAU	3	0.290	0.1	0.36	600	1250	2.900
intonaco int (gesso)	4	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.100
	sp. tot	0.65					
	resistenza te	rmica			R	11.155	[m ² K/W]
	trasmittanza t	ermica			U	0.090	[W/m ² K]

SOLAIO ESTERNO C	OPERTURA				COI	risponder	nza travi
	strati	s [m]	$\lambda \ [\text{W/mK}]$	λ [kJ/hmK]	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.040
calcestruzzo	1	0.050	1.6	5.76	2000	840	0.031
isolante polistirene	2	0.290	0.036	0.1296	25	1400	8.056
cemento armato	3	0.290	2.3	8.28	2400	1000	0.126
intonaco int (gesso)	4	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.100
	sp. tot	0.65					
	resistenza te	rmica			R	8.381	[m ² K/W]
	trasmittanza t	ermica			U	0.119	$[W/m^2K]$

	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m ³]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.170
Assito in legno	1	0.015	0.22	0.792	680	1200	0.068
CLS alleg argilla espansa	2	0.125	0.45	1.62	1200	840	0.278
solante polistirene	3	0.150	0.036	0.1296	25	1400	4.167
solaio PLASTBAU	4	0.250	0.1	0.36	600	1250	2.500
solante polistirene	5	0.100	0.036	0.1296	25	1400	2.778
intonaco int (gesso)	6	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.170
	sp. tot	0.660					
	resistenza te	rmica			R	10.159	[m ² K/W]
t	rasmittanza t	ermica			U	0.098	$[W/m^2K]$

	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	$\rho [kg/m^3]$	c [J/kgK]	R [m ² K/W]
	he	-	-	_	-	-	0.170
Assito in legno	1	0.015	0.22	0.792	680	1200	0.068
CLS alleg argilla espansa	2	0.125	0.45	1.62	1200	840	0.278
isolante polistirene	3	0.150	0.036	0.1296	25	1400	4.167
cemento armato	4	0.250	2.3	8.28	2400	1000	0.109
isolante polistirene	5	0.100	0.036	0.1296	25	1400	2.778
intonaco int (gesso)	6	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.170
	sp. tot	0.660					
	resistenza te	rmica			R	7.768	[m ² K/W]
1	trasmittanza t	ermica			U	0.129	$[W/m^2K]$

	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m ³]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	0.170
Assito in legno	1	0.015	0.22	0.792	680	1200	0.068
CLS alleg argilla espansa	2	0.125	0.45	1.62	1200	840	0.278
isolante polistirene	3	0.150	0.036	0.1296	25	1400	4.167
solaio PLASTBAU	4	0.250	0.1	0.36	600	1250	2.500
intonaco int (cartongesso)	4	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.170
	sp. tot	0.560					
r	esistenza te	rmica			R	7.381	[m ² K/W]
tra	asmittanza t	ermica			U	0.135	[W/m ² K]

SOLAIO VERSO CANTIN	iA.					rrisponder	
	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m³]	c [J/kgK]	R [m ² K/W]
	he	-	_	-	-	-	0.170
Assito in legno	1	0.015	0.22	0.792	680	1200	0.068
CLS alleg argilla espansa	2	0.125	0.45	1.62	1200	840	0.278
isolante polistirene	3	0.150	0.036	0.1296	25	1400	4.167
cemento armato	4	0.250	2.3	8.28	2400	1000	0.109
intonaco int (cartongesso)	5	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.170
	sp. tot	0.560					
i	resistenza termica						[m ² K/W]
tr	asmittanza t	ermica			U	0.200	$[W/m^2K]$

	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]
	he	-	_	-	_	-	0.040
Assito in legno	1	0.015	0.22	0.792	680	1200	0.068
massetto cemento	2	0.035	0.41	1.476	1200	840	0.085
calcestruzzo	3	0.040	1.6	5.76	2000	840	0.025
solante polistirene	4	0.100	0.036	0.1296	25	1400	2.778
solante polistirene	5	0.100	0.036	0.1296	25	1400	2.778
solaio PLASTBAU	6	0.250	0.1	0.36	600	1250	2.500
intonaco int (gesso)	7	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.100
	sp. tot	0.560					
resistenza termica					R	8.403	[m ² K/W]
trasmittanza termica					U	0.119	$[W/m^2K]$

SOLAIO CONTRO MAR	_	- []	1 [NA//1/]	↑ [L.1 /b		rrisponder	R [m ² K/W]
	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	р [кв/т]	c [1/kgk]	K [M K/W]
	he	-	-	-	-	-	0.040
Assito in legno	1	0.015	0.22	0.792	680	1200	0.068
nassetto cemento	2	0.035	0.41	1.476	1200	840	0.085
alcestruzzo	3	0.040	1.6	5.76	2000	840	0.025
solante polistirene	4	0.100	0.036	0.1296	25	1400	2.778
solante polistirene	5	0.100	0.036	0.1296	25	1400	2.778
emento armato	6	0.250	2.3	8.28	2400	1000	0.109
ntonaco int (gesso)	7	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	0.100
		0.560					
resistenza termica					R	6.011	[m ² K/W]
trasmittanza termica					U	0.166	$[W/m^2K]$

	strati	s [m]	$\lambda \ [\text{W/mK}]$	λ [kJ/hmK]	$\rho[\text{kg/m}^3]$	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	-
aria	1	0.200	0	0	0	0	-
cemento armato	2	0.100	2.3	8.28	2400	1000	0.043
isolante polistirene	3	0.200	0.036	0.1296	25	1400	5.556
calcestruzzo	4	0.030	1.6	5.76	2000	840	0.019
isolante polistirene	5	0.200	0.036	0.1296	25	1400	5.556
massetto cemento	6	0.070	0.41	1.476	1200	840	0.171
piastrelle ceramica	7	0.015	1.2	4.32	1900	800	0.013
	hi	-	-	-	-	-	0.170
		0.815					
resistenza termica					R	11.527	[m ² K/W]
trasmittanza termica					U	0.087	[W/m ² K]

SOLAIO VS VESPAIO					CO	rrisponder	nza travi
	strati	s [m]	$\lambda [W/mK]$	$\lambda [kJ/hmK]$	$\rho [kg/m^3]$	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	-
isolante vetro cellulare	1	0.050	0.04	0.144	25	1400	1.250
cemento armato	2	0.4	2.3	8.28	2400	1000	0.174
isolante vetro cellulare	3	0.050	0.04	0.144	25	1400	1.250
calcestruzzo	4	0.030	1.6	5.76	2000	840	0.019
isolante polistirene	5	0.200	0.036	0.1296	25	1400	5.556
massetto cemento	6	0.070	0.41	1.476	1200	840	0.171
piastrelle ceramica	7	0.015	1.2	4.32	1900	800	0.013
	hi	-	-	-	-	-	0.170
		0.815					
resistenza termica					R	8.601	[m ² K/W]
trasmittanza termica					U	0.116	[W/m ² K]

	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m ³]	c [J/kgK]	R [m ² K/W]
	he	_	-	-	-	-	-
assito in legno	1	0.025	0.22	0.792	680	1200	0.114
massetto cemento	2	0.050	0.41	1.476	1200	840	0.122
CLS alleg argilla espansa	3	0.245	0.45	1.62	1200	840	0.544
solaio in laterocemento	4	0.250	0.714	2.571	1800	800	0.350
intonaco interno	5	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	-
		0.590					
	resistenza te	ermica			R	1.159	[m ² K/W]
t	rasmittanza	termica			U	0.863	[W/m ² K]

SOLAIO INTERPIANO					COI	risponder	ıza travi
	strati	s [m]	$\lambda [W/mK]$	λ [kJ/hmK]	ρ [kg/m ³]	c [J/kgK]	R [m ² K/W]
	he	-	-	-	-	-	-
assito in legno	1	0.025	0.22	0.792	680	1200	0.114
massetto cemento	2	0.050	0.41	1.476	1200	840	0.122
CLS alleg argilla espansa	3	0.245	0.45	1.62	1200	840	0.544
cemento armato	2	0.250	2.3	8.28	2400	1000	0.109
intonaco interno	5	0.020	0.7	2.52	1200	1000	0.029
	hi	-	-	-	-	-	-
		0.590					
ı	esistenza te	ermica			R	0.917	[m ² K/W]
tr	asmittanza	termica			U	1.090	[W/m ² K]

	strati	s [m]	λ [W/mK]	λ [kJ/hmK]	ρ [kg/m ³]	c [J/kgK]	R [m ² K/W]
	he	-	_	-	-	-	-
ghiaia	1	0.500	0.96	3.456	1800	1000	0.521
massetto cemento	2	0.070	0.41	1.476	1200	840	0.171
	hi	-	-	-	-	-	0.170
		0.570					
	resistenza te	ermica			R	0.862	[m ² K/W]
	trasmittanza	termica			U	1.161	[W/m ² K]

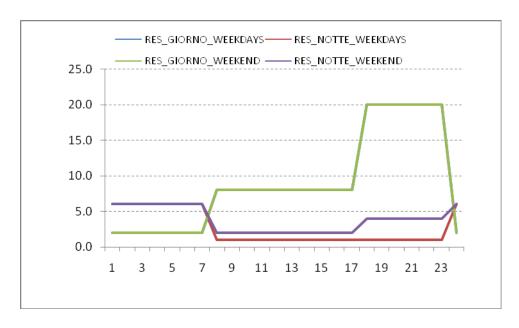
SOLAIO AUTORIMESS	SA VERSO	ΓERREN	0		COI	risponder	ıza travi
	strati	s [m]	$\lambda \ [\text{W/mK}]$	λ [kJ/hmK]	ρ [kg/m 3]	c [J/kgK]	R [m ² K/W]
	he	_	-	-	-	-	-
massetto cemento	1	0.070	0.41	1.476	1200	840	0.171
isolante vetro cellulare	2	0.050	0.04	0.144	25	1400	1.250
cemento armato	3	0.400	2.3	8.28	2400	1000	0.174
isolante vetro cellulare	4	0.050	0.04	0.144	25	1400	1.250
	hi	-	-	-	-	-	0.170
		0.070					
	resistenza te	ermica			R	3.015	[m ² K/W]
	trasmittanza	termica			U	0.332	[W/m ² K]
(note)	soluzione	inotizzata					

CASA PASSIVA "Mariano Comense"

ANNESS(

A.2

Stratigrafie_Chiusure trasparenti


Codice	Larghezza	Altezza	Largh Telaio	Aw	Ag	Uf	Ug	Uw	g	Quantità, esposizione
F1	0.7	0.9	0.11	0.63	0.327	0.9	0.7	1.02	0.52	6, NE - 1, NE
F2	1.4	2.4	0.11	3.36	2.335	0.9	0.7	0.96	0.52	2, SE
F3	1.5	0.5	0.11	0.75	0.36	0.9	0.7	1.05	0.52	1, SE
F4	2.4	0.9	0.11	2.16	1.41	0.9	0.7	0.97	0.52	1, SE - 2, NW
F5	5	6	0.11	30	27.63	0.9	1.1	1.2	0.52	1, SW
F6	1.3	0.7	0.11	0.91	0.467	0.9	0.7	1.07	0.52	3, NE

Carichi Interni

Prospetto 9 — Profili temporali degli apporti termici dagli occupanti e dalle apparecchiature (edifici residenziali)

Giorni	Ore	Soggiorno e cucina ($ oldsymbol{\Phi}_{int,Oc} + oldsymbol{\Phi}_{int,A}) / A_f$ W/m ²	Altre aree climatizzate (es. stanza da letto) ($arPhi_{ m int,Oc}$ + $arPhi_{ m int,A}$) / $A_{ m f}$ W/m ²
	07.00 - 17.00	8,0	1,0
Lunedì – Venerdì	17.00 – 23.00	20,0	1,0
Luneai – venerai	23.00 - 07.00	2,0	6,0
	Media	9,0	2,67
	07.00 - 17.00	8,0	2,0
Sabato – Domenica	17.00 – 23.00	20,0	4,0
Sabato – Domenica	23.00 - 07.00	2,0	6,0
	Media	9,0	3,83
Media		9,0	3,0

Figura 2: Fonte: UNI TS 11300-1

NB:

La zona "atrio" è stata rappresentata con il profilo soggiorno-cucina La zona "interrato" è stata rappresentata con il profilo soggiorno-cucina Il locale cucina è stato rappresentato con il profilo soggiorno-cucina Tutti gli altri ambienti sono stati considerati con il profilo Altre aree climatizzate

Dati caratteristici della geometria dell'edificio

	Area (m2)	Conditioned (Y/N)	Volume (m3)	Multipliers	Gross Wall Area (m2)	Window Glass Area (m2)
INTERRATO-02	11.67	Yes	25.15	1.00	6.27	0.65
INTERRATO-01	11.67	Yes	25.15	1.00	6.27	0.33
INTERRATO-04	3.84	Yes	8.27	1.00	0.00	0.00
AUTORIMESSA-01	139.40	No	320.62	1.00	26.91	1.10
INTERRATO-03	36.40	Yes	78.44	1.00	11.63	0.98
RESIDENZA-01	20.37	Yes	58.76	1.00	27.32	2.69
RESIDENZA-02	15.12	Yes	43.63	1.00	22.45	2.33
RESIDENZA-03	5.96	Yes	17.19	1.00	5.77	0.00
RESIDENZA-04	4.47	Yes	12.90	1.00	4.33	0.33
RESIDENZA-05	7.75	Yes	22.35	1.00	7.50	0.00
ATRIO	98.21	Yes	466.13	1.00	129.71	27.26
RESIDENZA-06	7.99	Yes	23.04	1.00	16.33	0.47
RESIDENZA-07	14.65	Yes	43.06	1.00	23.05	1.41
RESIDENZA-08	7.10	Yes	20.86	1.00	7.14	0.47
RESIDENZA-09	7.10	Yes	20.86	1.00	7.14	0.47
RESIDENZA-10	14.75	Yes	43.35	1.00	23.05	1.41

Rapporto superfici trasparenti / superfici opache

	Total	North (315 to 45 deg)	East (45 to 135 deg)	South (135 to 225 deg)	West (225 to 315 deg)
Gross Wall Area (m2)	403.89	94.65	102.40	89.15	117.70
Window Opening Area (m2)	52.19	9.08	7.19	5.52	30.40
Window-Wall Ratio (%)	12.92	9.59	7.02	6.19	25.83

CASA PASSIVA "Mariano Comense"

ANNESSO

INV ⁻

IPOTESI DI SIMULAZIONE

Carichi interni secondo schedule riportato

FABBISOGNO TERMICO PER RISCALDAMENTO

(energia utile media)

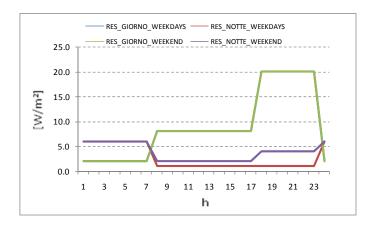
9.83 [kWh/m²a]

	RESIDENZA	INTERRATO	ATRIO	TOTALE
m ²	105.26	63.58	98.21	267.05
kWh	932	969	724.245	2625
kWh/m²	8.86	15.24	7.37	9.83

POTENZE DI RISCALDAMENTO

[kW]

	RES	INT	ATRIO
potenza (max)	0.38	0.46	3.05


CASA PASSIVA "Mariano Comense"

ANNESS(

EST -

IPOTESI DI SIMULAZIONE

Carichi interni secondo schedule riportato

FABBISOGNO TERMICO PER CONDIZIONAMENTO

4410 [kWh]

	RESIDENZA	INTERRATO	ATRIO	TOTALE
m ²	105.26	63.58	98.21	267.05
kWh	1459	153	2798	4410

POTENZE DI CONDIZIONAMENTO

[kW]

	RES	INT	ATRIO	
potenza (max)	0.58	0.28	3.95	