IL PORTALE PER L'ARCHITETTURA SOSTENIBILE, IL RISPARMIO ENERGETICO, LE FONTI RINNOVABILI IN EDILIZIA
Percorso di navigazione Infobuild energia > Approfondimenti > Comportamento termico delle coperture - Stagione invernale

Comportamento termico delle coperture - Stagione invernale

Realizzato in collaborazione con:
Logo ROCKWOOL

Stagione invernale

A cura di: Ing. Sergio Croce
Richiedi informazioni

Le coperture, così come ogni altro elemento opaco, sono interessate da un flusso di calore per conduzione (trasmissione) che concorre a determinare le perdite per trasmissione del bilancio energetico invernale dell’edificio. Questa voce può assumere notevole influenza soprattutto nel caso di edifici con un numero limitato di piani o nel caso dell’analisi degli alloggi immediatamente sottostanti la copertura, sia in termini di bilancio energetico, sia delle temperature di comfort.
Il parametro principale per determinare le dispersioni termiche invernali (in regime assimilabile a quello stazionario) è la trasmittanza termica  (generalmente denominata U o U-value), che rappresenta il flusso di calore che attraversa una superficie unitaria sottoposta a differenza di temperatura pari ad 1°C. La norma di riferimento per il calcolo della trasmittanza termica è la UNI EN ISO 6946:1999.


Il calcolo della trasmittanza

Il reciproco del valore di trasmittanza corrisponde alla sommatoria dei vari contributi di resistenza termica che concorrono al calcolo.



dove:

- Rsi è la resistenza liminare della superficie interna della struttura misurata in [m2K/W];
- S/λ è la resistenza termica di uno o più strati di materiale omogeneo misurata in [m2K/W];
- Rn = 1/C è la resistenza termica di strati di materiale non omogeneo misurato in [m2K/W];
- Ra è la resistenza termica di eventuali intercapedini in [m2K/W];
- Rse è la resistenza liminare della superficie esterna della struttura misurata in [m2K/W].

La resistenza di uno strato omogeneo corrisponde al suo spessore (in metri) diviso per la conduttività (W/mK) del materiale di cui è costituito. Per un elemento di costruzione a più strati, la resistenza di tutti gli strati deve essere sommata.
Per un elemento non omogeneo, ovvero caratterizzato da proprietà termiche non uniformi (è il caso degli strati che presentano al loro interno delle cavità d’aria, quali ad esempio i solai in laterocemento) si deve fare riferimento alla conduttanza C dello strato, espressa in W/m2K, che rappresenta il flusso di calore che avviene unicamente per via conduttiva all’interno del solido in esame. I valori di conduttanza sono riportati nelle apposite norme di riferimento (UNI 10355) o sono ricavabili dai certificati di prova forniti direttamente dai produttori.

Le resistenze superficiali (liminari) tengono conto degli scambi di calore per convezione e per irraggiamento che avvengono tra la superficie e l’aria interna (Rsi) e la superficie e l’aria esterna (Rse). Esse vengono a dipendere essenzialmente dal grado di esposizione e dalla qualità delle superfici.
Questi valori sono normati nella UNI EN ISO 6946 a seconda della direzione del flusso di calore: per le coperture si hanno tipicamente i seguenti valori: Rsi =0.10 m2K/W ed Rse=0.04 m2K/W, rappresentativi di superfici con emissività pari a 0.9.

Ciascuna cavità o intercapedine contribuisce con una propria resistenza. All’interno dell’intercapedine avvengono scambi di tipo convettivo e radiativo. Le intercapedini presenti in edilizia nei solai di copertura hanno, tipicamente, una resistenza termica pari a 0.16 W/m2K.
La resistenza termica relativa a strati d’aria risulta essere fortemente influenzata dalla velocità dell’aria stessa. In generale, si può dire che, laddove l’aria è ferma, essa presenta il massimo valore di resistenza: la componente convettiva della resistenza termica dell’intercapedine diminuisce all’aumentare della velocità dell’aria.
La resistenza termica totale di un componente per edilizia, contenente un’intercapedine d'aria fortemente ventilata, si ottiene trascurando la resistenza termica dell’intercapedine d'aria e di tutti gli altri strati che separano detta intercapedine dall'ambiente esterno. L’aria in un’intercapedine fortemente ventilata si trova, infatti, alla stessa temperatura dell’aria esterna.

Il calcolo si completa includendo una resistenza termica superficiale esterna corrispondente all'aria immobile, ovvero uguale alla resistenza termica superficiale interna del medesimo componente, poiché il rivestimento costituisce un riparo dal vento.
Spessori di intercapedine d’aria superiori a 15-25 mm non comportano apprezzabili incrementi della resistenza termica, in quanto i moti convettivi naturali che si instaurano oltre questo spessore vanificano l’effetto di resistenza termica per conduzione dovuto allo strato d’aria.
Inoltre, se l’intercapedine fosse delimitata da superfici aventi bassi valori di emissività emisferiche, si avrebbe una riduzione dello scambio radiativo, e quindi un corrispondente incremento della resistenza di intercapedine (dell’ordine di 2-3 volte).



Figura 1. Flusso di calore attraverso un elemento di chiusura e andamento delle temperature al variare della trasmittanza
a. Parete non isolata  b. Parete isolata 


Il flusso di calore che attraversa un elemento di chiusura, in regime stazionario, dipende dalla trasmittanza dello stesso, dalla differenza fra la temperatura esterna e quella interna e dalla superficie dell'elemento.

La trasmittanza termica risulta dunque essere legata alle caratteristiche dei materiali che costituiscono la struttura e alle condizioni di scambio termico liminare.
Attraverso questo parametro è possibile stimare quantitativamente il flusso di calore (di tipo conduttivo) che interessa l’elemento, in condizioni stazionarie (figure 1 e 2):



in cui:

ΔT = Te – Ti è la differenza tra la temperatura esterna e la temperatura interna.
Per come è definito, Q è negativo quando il calore è ceduto all’ambiente esterno e positivo in caso di guadagno di calore.



Figura 2. Flusso di calore attraverso un elemento di chiusura al variare della differenza di temperatura tra i due ambienti
a. ΔT = 0 °C  b. ΔT = 5 °C  c. ΔT = 30 °C 

Richiedi informazioni

Consiglia questo approfondimento ai tuoi amici

Commenta questo approfondimento

Altri approfondimenti realizzati in collaborazione con ROCKWOOL
Le ultime notizie sull’argomento
21/03/2019

Prefabbricato ad energia zero Xuhui Demonstrative Project

Un piccolo spazio condiviso e rispettoso dell’ambiente. E’ l’Xuhui Demonstrative Project di Pechino, il primo complesso prefabbricato ad energia zero ad uso sociale che combina strategie di progettazione passiva ed energie rinnovabili, e ...

12/03/2019

Le opportunit in edilizia delle abitazioni intelligenti e passive

ZEPHIR Passivhaus Italia, istituto di fisica edile, propone il 16 marzo nell'ambito del MADE un interessante convegno dedicato alle abitazioni intelligenti e sostenibili del futuro     Sabato 16 marzo nell'ambito del MADE Expo, importante ...

08/03/2019

Il cappotto termico: un settore dal potenziale ancora inespresso

Il Consorzio Cortexa ha presentato in un esclusivo evento la nuova strategia di sviluppo, capace di cogliere le opportunità che derivano da questo mercato, a partire da conoscenza, competenze certificate e progetti ad hoc    a cura di ...

22/02/2019

Il quartiere fotovoltaico tedesco realizzato in stile Jenga

La città tedesca di Kiel ha rivelato il piano di riqualificazione di un vecchio sito industriale. Il nuovo quartiere, KoolKiel, prevede impianti fotovoltaici sui tetti delle strutture, roof garden e sistemi di raccolta delle acque piovane.   a ...

08/02/2019

Il progetto dellasilo di MAD Architects a Pechino tra passato e futuro

Non un semplice asilo, ma un incredibile progetto architettonico: lo studio MAD Architects è la prestigiosa firma del nuovo Courtyard Kindergarten, il cui progetto verrà ultimato nel 2019   a cura di Fabiana ...

06/02/2019

Pareti in legno, performanti ed ecosostenibili

Nell’edilizia in legno c’è molta attenzione all’eco sostenibilità. Lo testimoniano le varie proposte presenti a Klimahouse, attente all’efficienza energetica   a cura di Andrea Ballocchi       Il ...

29/01/2019

Il Canada e il suo centro sulla sostenibilit ad energia zero

La città canadese di Hamilton, in Ontario, ha inaugurato da poco il nuovo Joyce Center for Partnership and Innovation building. Il primo edificio istituzionale dell’intero Canada ad energia zero: un laboratorio e un centro di ricerca incentrato ...

24/01/2019

Wikkelhouse, la tiny house in cartone 100% riciclabile

Le case del futuro? In cartone e 100% riciclabili. Questo è l’ambizioso progetto di Fiction Factory, una sfida che rivoluzionerà il modo di intendere le abitazioni   a cura di Fabiana Valentini     Wikkelhouse, ...