Impianti fotovoltaici di grandi dimensioni come beni immobili, la sentenza della Cassazione 28/08/2024
Appalti servizi energetici, approvati i CAM EPC: come cambiano i requisiti ambientali minimi 04/09/2024
Rinnovabili, sistemi accumulo e stoccaggio: cosa prevede il Dl Coesione sull’energia green 02/08/2024
Interventi di adeguamento e gestione intelligente degli impianti nel rispetto della direttiva Case Green 03/09/2024
Arriva in Italia TerraMax di SolarEdge: l’inverter per impianti utility di piccola-media dimensione 06/09/2024
L’impegno verso la sostenibilità ambientale di ZCS Azzurro premiato con la certificazione EPD 05/09/2024
Il solare a concentrazione è un settore di enorme interesse scientifico e industriale, in cui la conversione di energia avviene esclusivamente mediante noti cicli termodinamici innescati da fluidi per il trasferimento dell’energia termica. Numerosi tentativi sono stati perseguiti per integrare la tecnologia fotovoltaica in sistemi solari a concentrazione (CPV – Concentrated PhotoVoltaics), poiché si è dimostrato che l’efficienza di conversione è proporzionale al logaritmo naturale del flusso di radiazione incidente. Questi tentativi di integrazione hanno innescato progressi interessanti soprattutto in termini di efficienza massima, grazie all’uso di celle a tripla giunzione, che beneficiano della piccola superficie attiva ottenibile mediante sistemi a concentrazione puntiformi (concentratori parabolici, “dishes”, lenti di Fresnel). D’altra parte, significative problematiche tecnologiche legate alla gestione dell’elevato flusso di energia della radiazione minano seriamente la capacità di scalabilità del CPV: l’aumento della fotocorrente induce un incremento contestuale di energia dissipata per effetto Joule, causando un innalzamento della temperatura e una conseguente riduzione dell’efficienza. Inoltre, il CPV trova limitazioni tecnologiche nella non ideale fabbricazione delle ottiche di concentrazione (la cui non-idealità cresce con la scala del sistema): la produzione di hot-spots, dovuti a difetti di focalizzazione o di tracking solare, provoca un effetto di danneggiamento locale della struttura del semiconduttore, che rapidamente porta ad una degradazione permanente dell’efficienza. Infine, la tecnologia delle celle solari multi-giunzione, molto costose, permette solo miglioramenti estremamente marginali a livello di R&D, considerati i budget necessari per concorrere competitivamente con le industrie multinazionali produttrici. Il laboratorio DiaC2 (Diamond & Carbon Compounds), diretto dall’Ing. Daniele M. Trucchi del CNR-IMIP di Roma, sta sviluppando da anni tecnologie innovative per sistemi di conversione nel solare a concentrazione. Ciò mediante le attività di sviluppo in progetti europei (coordinamento scientifico di E2PHEST2US – GA 241270 – www.ephestus.eu, coordinamento di PROME3THE2US3 – GA 308975 – www.prometheus-energy.eu, partecipazione a STAGE-STE – GA 609837). Queste tecnologie sono basate sullo sviluppo di materiali e dispositivi finalizzati a sfruttare altri meccanismi per la conversione dell’energia solare concentrata, potenzialmente combinabili e caratterizzati da elevato rendimento, che beneficiano dell’alta temperatura raggiungibile. Ciò è perseguito sfruttando essenzialmente tre meccanismi: conversione termoionica, conversione termoionica amplificata da fotoemissione ed effetto termoelettrico. Tali meccanismi hanno in comune l’elevata temperatura operativa, sono sistemi a stato solido, possono essere combinati termicamente tra loro poiché il massimo di efficienza di conversione avviene a temperature differenti, e permettono lo sviluppo di sistemi cogenerativi (l’output può essere termico oltre che elettrico). I meccanismi di conversione termoionica e termoelettrica sono noti, ma gli elementi di innovazione sono rappresentati dagli stessi materiali che si intendono sviluppare, che traggono vantaggio dalla nanostrutturazione, dalla deposizione in strato sottile, dalla capacità di essere estremamente versatili e funzionalizzabili per una specifica applicazione (e.g. materiali a base carbonio). In questo modo, i relativi moduli di conversione si pongono, nei riguardi del solare a concentrazione, a metà strada tra la tecnologia CPV, che si è rivelata non utile a causa delle elevate temperature che si raggiungono, e i sistemi di conversione termodinamica, i quali, sfruttando il riscaldamento di un fluido, alimentano motori termici ad elevata efficienza ma di elevato costo. Le tecnologie proposte consentono di sfruttare i vantaggi di entrambe: l’assenza di elementi meccanici in movimento, l’elevata temperatura operativa e la scalabilità del sistema. Un modulo di conversione in condizioni operative sviluppato nel corso del progetto europeo E2PHEST2US Il progetto europeo E2PHEST2US, recentemente concluso, ha avuto come obiettivo lo sviluppo di moduli innovativi per la conversione di energia solare concentrata in energia elettrica e termica. I moduli di conversione sviluppati (Fig. 1) operano a temperature comprese tra 700 e 1000 °C. Per raggiungere tali temperature, devono essere irraggiati da sistemi a concentrazione solare, che raccolgono la radiazione solare e la concentrano su piccole aree. I moduli di conversione si pongono a metà strada tra la tecnologia del fotovoltaico, che si è rivelata non utile nel solare a concentrazione a causa delle elevate temperature che si raggiungono, e i sistemi di conversione termica, i quali riscaldano un fluido che alimenta specifici motori, caratterizzati da efficienza elevata ma anche da costo elevato. La tecnologia proposta consente di sfruttare i vantaggi di entrambe: l’assenza di elementi meccanici in movimento, l’elevata temperatura operativa e la scalabilità. Il materiale fondamentale per il funzionamento del modulo di conversione è il diamante sintetico CVD (chemical vapour deposition), che si è dimostrato un eccellente emettitore termoionico a temperature più basse di quelle dei materiali standard (metalli refrattari, caratterizzati da valori di emissione elettronica elevati solo a temperature maggiori di 1500 °C). L’efficienza di conversione elettrica massima, non attualmente ottenuta ma raggiungibile con un ulteriore sviluppo dei materiali, tra cui l’ottimizzazione del diamante CVD, è stata stimata essere superiore al 30%. Tale valore renderebbe la tecnologia proposta economicamente vincente sulle concorrenti, comprendendo tra esse anche quella del fotovoltaico classico non concentrato. I tempi stimati per una maturazione del modulo ad un livello industriale sono di ulteriori 3 anni di sviluppo. Una tecnologia ancor più innovativa e promettente è quella oggetto dell’attività del progetto europeo PROME3THE2US3 (www.prometheus-energy.eu), coordinato dal Dr. Daniele M. Trucchi, e che coinvolge l’Univ. di Tel Aviv, l’israeliano Technion, l’Istituto di Energia Solare del Fraunhofer, tre PMI high-tech (Exergy, Solaris Photonics e la romana Ionvac Process), oltre ad Abengoa, multinazionale leader nel settore. La tecnologia si basa sullo sviluppo di semiconduttori avanzati e sulla progettazione di opportune microstrutture, finalizzate a convertire la radiazione solare in un’elevata emissione elettronica per effetto termoionico e fotoelettrico. Al contrario del fotovoltaico, si trae beneficio dall’alta temperatura raggiungibile in sistemi a concentrazione solare. Avanzate tecnologie per la fabbricazione e nano-strutturazione dei materiali coinvolti permettono di massimizzarne le prestazioni. La tecnologia, il cui rendimento ottenibile è potenzialmente pari al 50%, si basa su sistemi a stato solido, perciò caratterizzati da scalabilità e durevolezza. Consiglia questo approfondimento ai tuoi amici Commenta questo approfondimento
06/09/2024 Progetto Rueda Sur: 188 MW di fotovoltaico ed eolico A cura di: Federica Arcadio BayWa r.e. realizzerà in Spagna entro la fine del 2025 Rueda Sur, un importante progetto ibrido, ...
04/09/2024 Pannelli fotovoltaici più sostenibili realizzati con materie prime rinnovabili Il progetto "E2 - E-Quadrat" ha portato alla realizzazione di moduli fotovoltaici che utilizzano materiali biodegradabili, ...
03/09/2024 Fotovoltaico galleggiante, l'impianto ibrido di Enel che unisce idroelettrico e solare Fotovoltaico: Enel Green Power ha realizzato nella Centrale di Venus un progetto nato dall'ibridizzazione fra energia ...
02/09/2024 Agrivoltaico nell’UE: i potenziali benefici agricoli ed energetici in Europa centrale A cura di: Andrea Ballocchi Uno studio Ember condotto in Repubblica Ceca, Ungheria, Polonia e Slovacchia, ha messo in luce i ...
29/08/2024 Previsioni di crescita delle energie rinnovabili, l'analisi di BloombergNEF Le energie rinnovabili continuano a crescere nel 2024. Ecco le previsioni e le sfide per solare ...
21/08/2024 Fotovoltaico in perovskite: nel 2027 Solertix produrrà moduli tandem A cura di: Andrea Ballocchi Solertix punta alla produzione entro tre anni con moduli tandem silicio-perovskite caratterizzati da un’efficienza del 30%.
31/07/2024 Eolico e fotovoltaico superano i combustibili fossili dell'UE nella prima metà del 2024 A cura di: Federica Arcadio Nei primi 6 mesi del 2024 eolico e solare hanno superato i combustibili fossili nell'UE, nonostante ...
31/07/2024 La svolta green Guggenheim Museum Bilbao: installati pannelli fotovoltaici sui tetti A cura di: Raffaella Capritti Il Guggenheim Bilbao compie un passo verso la neutralità climatica installando 300 pannelli solari sui tetti ...
30/07/2024 La crescita record del fotovoltaico in Italia nell'ottava edizione del Barometro del Fotovoltaico di Elmec Solar A cura di: Federica Arcadio Elmec Solar pubblica il Barometro del Fotovoltaico 2024: +360.198 impianti in Italia, crescita record a Roma, ...
25/07/2024 L'Europa ha sufficiente suolo per lo sviluppo sostenibile delle energie rinnovabili. Lo Studio EEB La metà dei terreni ritenuti adatti alle energie rinnovabili sarebbe sufficiente a raggiungere la neutralità climatica ...