Arriva la Carta delle aree per il deposito di rifiuti nucleari, 67 siti possibili in 7 Regioni 08/01/2021
Secondo una ricerca pubblicata su Science, un team di ricercatori inglesi è riuscito a dimostrare che, curvando fisicamente i semiconduttori delle celle solari, è possibile superare l’attuale limite di produzione del 33,7% a cui sono soggette. a cura di Tommaso Tautonico La produzione delle tradizionali celle solari è “bloccata” da limite Shockley-Queisser. Questo significa che in condizioni ideali solo il 33,7% della potenza della luce solare che colpisce la cella può essere trasformato in elettricità. Ma i fisici dell’Università di Warwick sono riusciti a dimostrare che questo limite è superabile. Un team di fisici dell’Università di Warwick ha analizzato i limiti fisici delle tradizionali celle solari presenti in commercio. Nel documento pubblicato su Science, intitolato “Flexo-Photovoltaic Effect”, il team di ricercatori è riuscito a dimostrare che deformando fisicamente i cristalli dei semiconduttori è possibile aumentare il rendimento delle celle solari. Le tradizionali celle fotovoltaiche sono formate da due strati di materiale semiconduttore (il silicio). Uno strato è tecnicamente “drogato” con atomi di boro (silicio di tipo P che presenta lacune di elettroni) mentre l’altro è drogato con atomi di fosforo (silicio di tipo N, eccesso di elettroni). Quando i due strati sono a contatto si ottiene una giunzione P-N e quando i fotoni della luce arrivano sulla superficie della cella, gli elettroni iniziano a scorrere tra i due strati producendo una corrente elettrica. Come già anticipato, questa struttura fisica è soggetta al limite di efficienza Shockley-Queisser, il che significa riuscire a convertire in elettricità solo il 33,7% della potenza contenuta nella luce solare che colpisce la cella fotovoltaica. Deformando le celle solari si potrebbe ottenere più energia C’è un altro modo per raccogliere le cariche prodotte dai fotoni della luce solare: l’effetto fotovoltaico anomalo (bulk photovoltaic effect). Questo effetto si verifica in alcuni semiconduttori e isolanti in cui la mancanza di perfetta simmetria attorno al loro punto centrale, genera una tensione altissima. Di contro questi materiali hanno efficienze molto basse e non vengono mai utilizzati nei sistemi fotovoltaici. Il team guidato dal professor Marin Alexe ha cercato di replicare questa mancanza di simmetria nelle comuni celle fotovoltaiche per aumentarne la produzione. Utilizzando delle punte conduttive hanno deformato alcuni cristalli di semiconduttori come titanato di stronzio, biossido di titanio e silicio, scoprendo che è possibile applicare l’effetto fotovoltaico anomalo a questi materiali. Secondo le dichiarazioni del professor Alexe: “Aumentando la gamma di materiali che possono beneficiare dell’effetto fotovoltaico anomalo non è necessario formare alcun tipo di giunzione, qualsiasi semiconduttore con un migliore assorbimento della luce può essere selezionato per le celle solari e, infine, il limite termodinamico finale dell’efficienza di conversione della potenza, il cosiddetto limite Shockley-Queisser, può essere superato. Per farlo però dobbiamo riuscire a superare le sfide ingegneristiche legate a questo processo. Immaginate quali vantaggi si potrebbero avere se le celle fotovoltaiche riuscissero ad aumentare anche di un solo punto percentuale la loro efficienza”. Consiglia questa notizia ai tuoi amici Commenta questa notizia
11/01/2021 Rinnovabili in UE: nel 2019 coprono il 19,7% dei consumi Nel 2019 nell'UE a 27 le energie rinnovabili hanno coperto il 19,7% dei consumi, solo lo ...
22/12/2020 Nel 2021 gli investimenti nelle rinnovabili torneranno ai livelli Pre-COVID Secondo IHS Markit il prossimo anno ci sarà un'impennata di investimenti e della nuova capacità aggiunta ...
18/12/2020 Un bando da 20 milioni in Lombardia per fotovoltaico e sistemi di accumulo Il bando Axel mette a disposizione contributi a fondo perduto per la realizzazione di impianti fotovoltaici ...
16/12/2020 Il fotovoltaico supera la prova covid: +11% per le nuove installazioni in UE nel 2020 L'Unione europea nel 2020 ha aggiunto 18,7 GW di nuova capacità fotovoltaica. Nel 2024 la capacità ...
01/12/2020 Fotovoltaico integrato negli edifici, a che punto è la ricerca Le tecnologie del fotovoltaico integrato negli edifici permettono di sostituire i materiali da costruzione tradizionali trasformando ...
20/11/2020 A Tolosa un'area contaminata rinasce grazie al fotovoltaico Vicino al centro della città un impianto fotovoltaico di proprietà di Axpo, sviluppato su una superficie ...
18/11/2020 L'Intelligenza artificiale migliora le prestazioni del fotovoltaico Eurac Research coordina il progetto TRUST-PV che ha l'obiettivo di migliorare prestazioni e affidabilità degli impianti ...
10/11/2020 Rinnovabili, crescita record. Attesi quasi 200 gigawatt di nuova capacità Pubblicato da IEA il rapporto Renewables 2020: nonostante la pandemia, le energie rinnovabili nel 2020 sono ...
09/11/2020 Fotovoltaico, rinnovabili e transizione energetica: cosa è stato fatto e cosa resta da fare Da qui al 2030 l’Italia si prepara a mettere in atto la transizione energetica e raggiungere ...
06/11/2020 Solare a concentrazione + fotovoltaico, al via il primo impianto in Italia Sarà inaugurato a breve a Partanna, in provincia di Trapani, il primo impianto che unisce solare ...