Rinnovabili, dall’Ue il regolamento per accelerare la diffusione di pompe di calore e fotovoltaico 20/01/2023
Chi compra casa con Ape sbagliato ha diritto al risarcimento: storica sentenza a tutela dei compratori 25/01/2023
Rinnovabili e comunità energetiche: la panoramica delle regioni che prevedono sconti e agevolazioni fiscali 11/01/2023
Bilancio di sostenibilità per imprese e pmi, nuova sfida per l’Italia entro il 2026: cos’è e come funziona 03/01/2023
Efficienza e design: Isotec Parete per le facciate ventilate di una villa a Castelfranco Veneto 25/01/2023
Il vapore d’acqua modifica il comportamento dell’isolante termico, aumentando il valore di conduttività termica e incrementando quindi le perdite energetiche e il rischio di condensazioni. La conduttività termica equivalente dell’acqua è di 0,56 W/mK, un valore molto alto se paragonata ai valori dichiarati del polistirene estruso (XPS) 0,033-0,038 W/mK o a quelli dichiarati del poliuretano espanso (POLIISO®) 0,023-0,028 W/mK. Questa è la ragione per cui una piccola quantità di acqua, inferiore anche del 5% del volume complessivo dell’isolante, provoca un aumento (un peggioramento) considerevole della conduttività. La permeabilità al vapore di un materiale isolante può essere considerata, a seconda del tipo e delle condizioni di applicazione, una caratteristica positiva (permette il normale flusso del vapore) o negativa. In casi di ambienti con forte presenza di umidità o in presenza di importanti differenze di temperatura tra ambiente esterno ed interno si dovrà, in fase di progetto, prevedere l’eventuale inserimento di una barriera al vapore sul lato caldo della struttura per evitare i fenomeni di condensa all’interno della struttura stessa o dell’isolante. Per determinare la necessità o meno della barriera al vapore e lo spessore del materiale isolante necessario si utilizza generalmente il Metodo Grafico di Glaser. Il progettista può ad esempio adottare isolanti poliuretanici con rivestimenti impermeabili o semipermeabili (nella tabella sotto sono indicati i più comuni) che gli permettono di aumentare, in base alle condizioni di esercizio previste, la resistenza alla diffusione del vapore dello strato isolante. Il fattore di resistenza alla diffusione del vapore del poliuretano (µ= 30-150) è tale da rendere il materiale facilmente adattabile alle più comuni esigenze applicative. Di seguito i concetti basilari più importanti per comprendere il controllo del passaggio del vapore d’acqua attraverso i materiali e gli isolanti termici. Permeabilità al vapore di acqua (δp) La permeabilità al vaporeo acqueo misura il comportamento di un materiale al passaggio dell’umidità, cioè la quantità di vapore d’acqua che attraversa, per unità di tempo, un’unità di superficie del prodotto, per un campione di spessore unitario, quando c’è una differenza di pressione di vapore unitaria. Le differenti e complesse unità di misura usate in ogni Paese hanno dato luogo ad un fattore adimensionale (senza unità) che è il Fattore di Resistenza al vapore di acqua o fattore µ. Fattore di Resistenza al vapore di acqua (µ) δ aria (permeabilità al vapore di acqua dell’aria) µ = —————————————————————————- δ prodotto (permeabilità al vapore di acqua del prodotto) Il fattore adimensionale µ indica quante volte è maggiore la resistenza alla diffusione del vapore di acqua di un prodotto rispetto ad un volume di aria di uguale spessore (per l’aria µ =1). Per loro natura, tutti i materiali, eccetto il vetro ed i metalli, sono permeabili al vapore di acqua. Un buon isolante deve evitare però al massimo la penetrazione di vapore d’acqua, al fine di evitare un aumento significativo della conduttività termica durante il corso della vita di esercizio di un prodotto. Se consideriamo un isolante termico a cellule aperte e a basso fattore µ, in questo caso il vapore d’acqua penetrerà rapidamente nel materiale e lo inumidirà. Un materiale isolante a struttura cellulare chiusa, invece, e ad alto fattore µ, è caratterizzato da un’alta resistenza della penetrazione del vapore d’acqua. La tabella qui di seguito mette a confronto il comportamento di diversi materiali isolanti: Si può notare che il tipo di materiale col fattore di µ più elevato (∞) è il pannello di poliuretano espanso con supporti impermeabili: questo significa che non esiste pericolo di condensazione all’interno del materiale isolante; la schiuma rimane asciutta ed il potere isolante è costante nel tempo. Uno studio sperimentale su campioni di poliuretano espanso mostra come i valori di lambda medi per 25 anni oscillano tra 0,025 e 0,028 W/mK per i pannelli con rivestimenti permeabili e tra 0,023 e 0,025 per quelli con rivestimenti impermeabili. L’altro tipo di materiale isolante con µ elevato è il Polistirene estruso (XPS). EDILTEC® produce entrambe le linee di prodotti ad elevato µ: le lastre in polistirene estruso X-FOAM®e i pannelli POLIISO®, sia nella versione con rivestimenti impermeabili (POLIISO® AD, POLIISO®TEGOLA, POLIISO® PLUS) che permeabili (POLIISO® SB, POLIISO® VV, POLIISO® ED). Di seguito le caratteristiche dei prodotti della gamma EDILTEC® Chiaramente, a seconda della tipologia costruttiva, del tipo di applicazione, dell’umidità relativa dell’ambiente e degli sbalzi termici a cui è soggetto, si opterà per un prodotto isolante più o meno resistente al passaggio del vapore, abbinandolo o meno ad una barriera al vapore. E’ importante sempre effettuare il diagramma di Glaser e verificare che non ci sia mai condensa all’interno delle strutture e, in particolar modo, del materiale isolante, per evitare, come già ribadito, di non peggiorare il valore di conducibilità termica dell’isolante e per non alterare le sue caratteristiche specifiche. Di seguito un confronto sui contenuti d’acqua in % scaturiti dalle prove di assorbimento d’acqua totale e parziale (EN 12087 e EN 1609) per diversi tipi di materiali isolanti (i dati sono valori medi reperibili da schede tecniche presenti online). Consiglia questo approfondimento ai tuoi amici Commenta questo approfondimento
27/01/2023 Bonus edilizi, gli Architetti chiedono un testo unico Il Presidente degli Architetti Miceli sul Superbonus: necessario semplificare il quadro normativo e pubblicare un testo ...
26/01/2023 Expo 2030: a Roma la più grande Urban Solar Farm del mondo Expo Solar Park, progettato per supportare la candidatura di Roma all’Expo 2030, verte sulla produzione di ...
25/01/2023 Sciopero benzinai, stop impianti e self service per 48 ore La protesta contro le decisioni del governo e il decreto Trasparenza. Al centro le sanzioni e ...
25/01/2023 Riciclo dei rifiuti: l’Italia è regina europea in economia circolare Il report della Fondazione per lo Sviluppo sostenibile segnala che l'Italia è ai vertici in Europa ...
24/01/2023 Batterie ioni litio: per la prima volta, il prezzo tocca i 151 $/kWh Tra il 2021 e il 2022 i prezzi delle batterie agli ionio litio sono cresciuti del ...
23/01/2023 K.EY, appuntamento a Rimini con la fiera delle energie rinnovabili Dal 22 al 24 marzo 2023 a Rimini la prima edizione di K.EY, dedicata alle energie ...
20/01/2023 Le scuole italiane in ritardo su efficienza energetica e sicurezza Gli edifici scolastici in Italia sono vecchi, poco sostenibili e insicuri. Il XXII Rapporto di Legambiente ...
19/01/2023 Eni MyChange, lo strumento di formazione innovativo nel campo della sostenibilità MyChange è lo strumento digitale che propone alle imprese contenuti formativi e preziosi spunti di riflessione ...
19/01/2023 Finanza e combustibili fossili: un legame che prosegue, malgrado tutto Molte banche, asset manager, assicurazioni continuano a investire nello sviluppo di petrolio, gas e carbone, malgrado ...
18/01/2023 Energia, al via procedimento autorizzativo per collegamento Italia-Tunisia Il ministero dell’Ambiente e della sicurezza energetica dà l’ok all’iter per il corridoio energetico da oltre ...