Energy storage in Italia: essenziale per la transizione energetica, occasione per fare sistema 04/10/2024
Appalti servizi energetici, approvati i CAM EPC: come cambiano i requisiti ambientali minimi 04/09/2024
Federalberghi Abruzzo e Regalgrid: un accordo per la transizione energetica delle strutture 04/10/2024
img by https://fusionforenergy.europa.eu/ Indice degli argomenti: Energia da fusione nucleare: cos’è e quali benefici offre Energia di fusione: dalle stelle alla replicazione sulla Terra Progetto ITER: il Tokamak e l’avvio Energia di fusione: il ruolo dell’Italia Replicare l’energia che alimenta le stelle sulla Terra: è l’obiettivo dell’energia da fusione nucleare, considerata “una delle opzioni utili per garantire una fonte di energia di larga scala, sicura, rispettosa dell’ambiente e praticamente inesauribile”, fa sapere Enea. Proprio in questi giorni, in piena emergenza coronavirus e con le difficoltà relative, è arrivato a destinazione al sito di Cadarache, in Francia, il primo dei giganteschi magneti superconduttivi destinati al progetto ITER. È il più grande esperimento scientifico specifico e il suo obiettivo è realizzare un reattore sperimentale, dal costo superiore ai 20 miliardi di euro, per testare la produzione di energia da fusione nucleare. Enea coordina il programma nazionale che vede impegnati circa 600 tra ricercatori e tecnologi, in cui è coinvolto il CNR, il Consorzio RFX, diverse università e consorzi universitari. Inoltre vi sono molte aziende italiane attive: hanno vinto più del 50% delle commesse di ITER, per un valore superiore a 1,3 miliardi di euro. L’Italia, quindi, è ben rappresentata, giocando un ruolo di valore grazie alla competenza e all’esperienza accumulata: come segnala sempre l’Agenzia Nazionale, il nostro Paese è tra i pionieri della ricerca sulla fusione, con attività avviate già alla fine degli anni Cinquanta. Energia da fusione nucleare: cos’è e quali benefici offre L’energia da fusione nucleare è la stessa fonte che alimenta le stelle. Il Sole è il più grande dispositivo di fusione nel sistema solare. In esso, gli atomi di idrogeno si muovono a velocità incredibile e si fondono in un atomo più pesante di elio. La reazione rilascia molta energia sotto forma di luce e calore.“Ogni secondo il nostro Sole converte 600 milioni di tonnellate di idrogeno in elio” spiega nel proprio sito Fusion for Energy (F4E), l’organizzazione dell’Unione Europea che gestisce il contributo europeo a ITER – International Thermonuclear Experimental Reactor. Una partnership che riunisce Cina, Giappone, India, Repubblica di Corea, Federazione Russa, Stati Uniti ed Europa. Quest’ultima è responsabile di quasi la metà del progetto, mentre gli altri ei contribuiscono in egual misura al resto. Per replicare la reazione di fusione, sono necessari due isotopi di idrogeno: deuterio e trizio. La difficoltà è che mentre sul Sole, a motivo della forte gravità, gli atomi di idrogeno si fondono a 15 milioni di gradi centigradi, sulla Terra, invece, a causa delle forze gravitazionali più deboli, hanno bisogno di essere riscaldati a temperature fino a 150 milioni di °C per avviare il processo che porta alla formazione del plasma, un gas ionizzato costituito per lo più da una miscela di elettroni e ioni, atomici o molecolari. In merito, invece, alla disponibilità dei due isotopi non ci sarebbero grandi problemi: “Il deuterio si trova in acqua di mare – spiega ancora F4E – Abbiamo scorte sufficienti per milioni di anni. Il trizio può essere generato dal litio, estratto dalla crosta terrestre”. Energia di fusione: dalle stelle alla replicazione sulla Terra Per decenni gli scienziati hanno cercato di capire come produrre questa energia da fusione attraverso vari esperimenti. Sebbene il principio sia semplice, essi devono affrontare diverse sfide, la prima delle quali è la temperatura decisamente maggiore necessaria per innescare il processo. Il principio fondamentale della fusione è rappresentato dalla collisione di nuclei atomici energetici: sulla Terra è possibile farlo, “fondendo” due nuclei carichi positivamente, come sono appunto deuterio e trizio, vincendo la repulsione elettrostatica esistente tra cariche dello stesso segno. Il CNR, attraverso l’Istituto ISTP, spiega che: “Nelle stelle il plasma è confinato dall’intenso campo gravitazionale generato dalla sua massa. In laboratorio ciò non è possibile ma rimane la necessità che il plasma sia ben confinato perché le reazioni nucleari siano tali da sostenere il processo di fusione.” La struttura di confinamento deve essere mantenuta a temperature ragionevolmente basse, al contrario del plasma che deve essere portato alle temperature di centinaia di milioni di gradi: “in tali condizioni il contatto porterebbe ad un raffreddamento del plasma stesso e le pareti del contenitore verrebbero danneggiate”. A questo scopo, le due linee di ricerca maggiormente perseguite sono il confinamento magnetico e il confinamento inerziale. “Il confinamento magnetico utilizza forti campi magnetici in grado di vincolare il moto delle particelle cariche del plasma ad essere confinato in una regione limitata.” Progetto ITER: il Tokamak e l’avvio Per questi motivi si è arrivati a ideare il Tokamak, una camera che utilizza un potente campo magnetico per contenere il plasma caldo.Si tratta, in estrema sintesi, di un recipiente toroidale (a forma di ciambella), contenente bobine magnetiche che confinano il plasma, tenendolo lontano dalle pareti della camera che ospita la reazione di fusione. Il concetto alla base del Tokamak è nato in Russia negli anni Cinquanta del secolo scorso. Ma è dagli anni Settanta, che si è consolidata un’esperienza di ricerca che ha visto unirsi i laboratori europei per costruire JET (Joint European Torus) situato a Culham (Regno Unito). Ulteriori conoscenze sono state accumulate attraverso altri dispositivi tokamak come quello italiano di RFX (Italia), tra gli altri. La stessa tecnologia sarà utilizzata in ITER – International Thermonuclear Experimental Reactor. img by https://fusionforenergy.europa.eu/ L’Europa è la sede del progetto attualmente in costruzione a Cadarache, in Francia. Permetterà agli scienziati di studiare il plasma che dovrà produrre una potenza termica di 500 MW, decisamente maggiore rispetto a quella utilizzata (50 MW), tutto questo per circa 7 minuti. La centrale dimostrativa (DEMO) seguirà alla realizzazione del reattore sperimentale, aprendo la strada al passaggio da un esperimento scientifico a una centrale elettrica vera e propria. Il percorso che permetterà di arrivare a realizzare il progetto ITER è lungo, parte da una collaborazione scientifica internazionale unica nel suo genere, avviata nel 1985 e che nel tempo ha visto aggregarsi l’allora Unione Sovietica, gli Stati Uniti, l’Unione Europea e il Giappone e poi Cina, la Corea del Sud e l’India, che hanno stipulato nel 2007 un accordo internazionale per costruire il reattore sperimentale. Energia di fusione: il ruolo dell’Italia Arriviamo a pochi giorni fa, ovvero alla consegna al sito di Cadarache del primo dei 18 giganteschi magneti superconduttivi (10 dei quali verranno realizzati in Europa) destinati al progetto. Per costruire la più grande superbobina mai prodotta in Europa è stato fondamentale l’apporto italiano: a partire dall’Enea (nel consorzio Icas) a diverse aziende. La superbobina è nata in Italia, nello stabilimento di La Spezia della ASG Superconductors (Malacalza), su commessa del consorzio europeo Fusion for Energy (F4E), l’Agenzia Ue che gestisce il contributo europeo al progetto ITER in veste di appalti e commesse. Di fattura italiana sono anche i 5 km di cavi superconduttori al suo interno, progettati e realizzati dal Consorzio Icas che unisce Enea con due aziende di punta del settore, la Criotec Impianti e la Tratos Cavi. “Abbiamo vinto un bando internazionale da 50 milioni di euro di Fusion4Energy al quale partecipavano anche importanti industrie europee. E recentemente abbiamo vinto anche una commessa da 5 milioni di euro con il Cern”, spiega Antonio della Corte, presidente del consorzio Icas e responsabile Enea della Sezione Superconduttività. Lo stesso Ente nazionale sottolinea quale importanza abbiano le aziende italiane nel campo della fusione nucleare, rappresentando un’eccellenza internazionale: grazie a competenze molto elevate, hanno vinto oltre il 50% delle commesse di ITER, per un valore di oltre 1,3 miliardi di euro. Consiglia questo approfondimento ai tuoi amici Commenta questo approfondimento
10/10/2024 Rinnovabili al 2030: un boom globale che cambierà il futuro dell'energia Il nuovo rapporto IEA prevede un incremento massiccio delle rinnovabili entro il 2030, con il fotovoltaico ...
09/10/2024 In Italia quasi 2000 eventi estremi in 9 mesi. L'allarme del WWF Report WWF: quasi 2000 eventi climatici estremi in Italia nel 2024. Servono azioni urgenti per ridurre ...
08/10/2024 La Commissione Europea propone 12 mesi di proroga per l'attuazione del Regolamento UE sulla deforestazione A cura di: Federica Arcadio La Commissione Europea ha proposto una proroga di 12 mesi per l'applicazione del Regolamento UE sulla ...
07/10/2024 L'innovazione estetica nei pannelli fotovoltaici: SolarLab e la tecnologia ColorBlast® I pannelli fotovoltaici SolarLab con tecnologia ColorBlast® combinano efficienza energetica e design personalizzabile. Perfetti per integrarsi ...
07/10/2024 Nuovo studentato Accademia Brera, esempio di design sostenibile e innovazione A cura di: Raffaella Capritti Nuovo studentato Accademia Brera presso lo Scalo Farini a Milano: un progetto NZEB e gas-free che ...
04/10/2024 Energia 2023: in Italia meno dipendenza dall’estero e più rinnovabili La relazione MASE 2023 evidenzia una riduzione della dipendenza energetica dall’estero e una crescente diffusione delle ...
03/10/2024 Smart Mobility Report 2024: calo in Italia per il mercato delle auto elettriche A cura di: Raffaella Capritti Smart Mobility Report 2024: il mercato delle auto elettriche in calo in Italia. Le sfide future ...
03/10/2024 Conferenza internazionale sulla siccità, le possibili soluzioni A cura di: Federica Arcadio Obiettivo della conferenza del WMO sulla siccità è discutere strategie per trovare le soluzioni per mitigare ...
02/10/2024 Ecosistemi urbani italiani da ripristinare, Ispra presenta l'Atlante Dati Ambientali L'Atlante dati ambientali di Ispra ha l'obiettivo di contribuire alla diffusione di maggiore consapevolezza sulle sfide ...
01/10/2024 Investire sullo stoccaggio di batterie può farci risparmiare 9 miliardi di euro in gas A cura di: Giorgio Pirani Senza investire nei sistemi di accumulo, entro sei anni l'Europa rischia di disperdere una quantità di ...