Impianti fotovoltaici di grandi dimensioni come beni immobili, la sentenza della Cassazione 28/08/2024
Appalti servizi energetici, approvati i CAM EPC: come cambiano i requisiti ambientali minimi 04/09/2024
Rinnovabili, sistemi accumulo e stoccaggio: cosa prevede il Dl Coesione sull’energia green 02/08/2024
Interventi di adeguamento e gestione intelligente degli impianti nel rispetto della direttiva Case Green 03/09/2024
Architettura biomimetica: ispirarsi alla natura per una progettazione sostenibile e innovativa 10/09/2024
Arriva in Italia TerraMax di SolarEdge: l’inverter per impianti utility di piccola-media dimensione 06/09/2024
L’impegno verso la sostenibilità ambientale di ZCS Azzurro premiato con la certificazione EPD 05/09/2024
Il termine “deep renovation” è definito, secondo la direttiva EU sull’efficienza energetica, come la ristrutturazione di un edificio economicamente vantaggiosa che riduce considerevolmente il consumo finale di energia rispetto alla condizione precedente all’intervento. Generalmente si parla di una riduzione pari ad almeno il 60% di energia. In questo modo l’intervento diviene economicamente vantaggioso data la riduzione dei costi energetici durante l’intero ciclo di vita dell’edificio e quindi un rapido ritorno dell’investimento necessario a sostenere l’intervento. L’esigenza di fare interventi di deep retrofit si presenta quindi per tutti gli edifici datati, sia pubblici che privati, al fine di fare fronte agli obiettivi di risparmio energetico prefissati per l’Unione Europea ma anche alla crisi che ha colpito il settore immobiliare negli ultimi anni. Proprio quest’ultima può essere considerata come driver economico per lo sviluppo di soluzioni innovative ed economicamente accessibili per più ragioni. Infatti negli ultimi anni, proprio a causa della crisi, molti edifici sono rimasti vuoti, costituendo così un problema di gestione economica e sociale, soprattutto per gli enti pubblici. In questo caso è necessaria una riconversione o trasformazione per cambiarne la funzione o realizzare unità residenziali, dato anche l’incremento di richiesta in questo settore (social housing per anziani, migranti, studenti etc.). In alcuni casi si tratta anche di edifici storici per i quali, oltre all’obiettivo dell’efficientamento, occorre tener presente la necessità di mantenere il valore storico. Il progetto europeo P2Endure (Plug-and-Play product and process innovation for Energy-efficient building deep renovation) promuove soluzioni innovative per il deep renovation basate su sistemi prefabbricati di tipo plug&play, combinati con tecnologie innovative per il controllo e la realizzazione dell’intervento, quali stampa 3D, tecniche di diagnostica avanzata e Building Information Modeling (BIM). Il progetto, iniziato il 1° Settembre 2016 e con durata complessiva di 4 anni, è frutto di una collaborazione di 16 partner Europei e si pone l’obiettivo di costruire un pacchetto di soluzioni derivate da recenti progetti di ricerca così da accelerarne la diffusione, soprattutto grazie allo sviluppo di processi modulari basati sulla progettazione e realizzazione supportata da BIM. Tra le soluzioni previste sarà possibile contare pannelli prefabbricati ad elevate prestazioni termiche, finestre innovative, moduli di espansione roof-top, etc. L’intero processo verrà applicato ed implementato in 10 dimostratori reali distribuiti su varie aree geografiche dell’Europa. L’approccio fortemente dimostrativo del progetto permetterà di validare su ampia scala le varie soluzioni, oltre al processo di ristrutturazione nel suo complesso. L’obiettivo è di raggiungere un 60% di risparmio energetico, un 15% di riduzione dei costi e 50% del tempo necessario per realizzare l’intervento, garantendo il comfort per gli occupanti (sia in termini di qualità dell’ambiente interno che di ridotto disturbo dovuto alle operazioni di ristrutturazione). Questo sarà possibile con un processo di sviluppo composto da 4 step: Mapping – Modelling – Making – Monitoring. Si partirà una analisi tecnico-economica delle soluzioni proposte (mapping), seguita dalla modellazione BIM degli interventi sui 10 dimostratori per ottimizzarne la progettazione (modelling) e poi la realizzazione degli interventi (making). Infine verrà implementato un sistema di monitoraggio del processo e degli edifici per validare l’approccio e garantire le prestazioni (monitoring). Figura 1 Visualizzazione modello BIM (Sinistra) e concept del sistema di stampa 3D applicato all’involucro (destra) Proprio su quest’ultimo step, il monitoraggio, l’Università Politecnica delle Marche avrà un ruolo da protagonista in quanto applicherà tecnologie avanzate per il monitoraggio dell’edificio in tutte le fasi del processo: pre-intervento, durante la ristrutturazione e post-intervento. In particolare, verrà applicato il sistema di misura Comfort Eye per fare la valutazione delle prestazioni in termini di comfort termico. Il sensore, brevettato dall’Università, consente di fare una mappatura dettagliata delle condizioni di comfort termico. Figura 2 Processo di monitoraggio applicato per le diverse fasi del processo di ristrutturazione Data la presenza di un sensore IR, in grado di scansionare l’ambiente monitorato, sarà possibile analizzare le maggiori criticità da un punto di vista termico, legate alle basse prestazioni dell’involucro (presenza di ponti termici o forti oscillazioni di temperatura delle pareti) e fornire input essenziali per la progettazione dell’intervento. Lo stesso strumento verrà utilizzato poi per verificare le prestazioni dopo aver fatto l’intervento e confrontare i risultati ottenuti con quelli attesi. Il vantaggio tangibile di questa soluzione sarà dato dalla possibilità di realizzare monitoraggio estensivo con un sistema a basso costo e di minima intrusività. Tuttavia, per garantire che gli interventi realizzati forniscano le prestazioni previste, ovvero per ridurre la distanza tra efficienza prevista e reale, occorre monitorare in modo dettagliato anche il processo stesso di costruzione, così da identificare subito eventuali errori ed intervenire prima di aver concluso l’opera. Proprio per questo, tra le soluzioni proposte dall’Università Politecnica delle Marche nel pacchetto di P2Endure, sarà possibile trovare tecniche diagnostiche da poter applicare sul campo per la valutazione delle prestazioni termiche ed acustiche dell’involucro: analisi termografica per la rilevazione di ponti termici e calcolo della trasmittanza, misure acustiche per la determinazione della distribuzione di pressione sonora e transmission loss, misure ad ultrasuoni per la valutazione della tenuta alle infiltrazioni. Figura 3 Analisi termografica per il calcolo dell’U-value complessivo di parete (sinistra) rilevazione delle infiltrazioni di aria con sonda ad ultrasuoni Tutti i sistemi di misura saranno integrati in una piattaforma per smart device basata su “augmented reality” ed interfacciata con il BIM dell’edificio al fine di supportare gli operatori nell’identificazione e localizzazione immediata degli eventuali difetti di costruzione. Il progetto è coordinato da DEMO Consultants, azienda olandese specializzata nel settore delle costruzioni con il supporto dell’Università Politecnica delle Marche quale coordinatore tecnico del progetto, con l’incarico di supervisionare e gestire lo sviluppo tecnico del processo modulare di P2Endure e l’implementazione nei 10 dimostratori. A cura di: Prof. Gian Marco Revel Dr. Marco Arnesano Riferimenti: Prof. Ing. Gian Marco Revel Università Politecnica delle Marche Dipartimento di Ingegneria Industriale e Scienze Matematiche Via Brecce Bianche, 60131 Ancona, ITALY. Email: [email protected] tel. +39 071 2204518 fax +39 071 2204801 Consiglia questo approfondimento ai tuoi amici Commenta questo approfondimento
16/09/2024 Giornata internazionale per la conservazione dello strato di ozono Il 16 settembre si celebra la Giornata internazionale per la protezione dello strato di ozono, ricordando ...
13/09/2024 Energia e rinnovabili, cosa emerge dal Rapporto Draghi sull'economia europea A cura di: Adele di Carlo Serve un’Europa più competitiva e con investimenti diversificati: i punti salienti del Report Draghi e cosa ...
12/09/2024 Relazione sull'Unione dell'energia 2024: progressi, sfide e obiettivi futuri dell'UE Unione dell'energia: I progressi e le sfide dell'UE nella transizione energetica sicura, accessibile e competitiva nel ...
12/09/2024 Nasce il più grande impianto di idrogeno verde dell'Europa centrale e orientale A cura di: Federica Arcadio MOL ha avviato la produzione di idrogeno verde con un impianto da 10 MW, il più ...
11/09/2024 Enerpoly lavora alla prima megafabbrica al mondo di batterie agli ioni di zinco Enerpoly ha aperto la prima megafabbrica al mondo di batterie agli ioni di zinco. La struttura ...
10/09/2024 Dubai Green Spine: l’autostrada più ecologica al mondo A cura di: Tommaso Tautonico Dubai Green Spine: corridoio sostenibile di 64 km in cui sostenibilità, vivibilità e infrastrutture verdi ridefiniscono ...
09/09/2024 Degrado dei sistemi di acqua dolce: metà dei paesi del mondo in crisi secondo l'UNEP A cura di: Raffaella Capritti Secondo l'UNEP metà dei paesi mondiali soffrono il degrado dei sistemi di acqua dolce, con gravi ...
07/09/2024 Giornata Internazionale dell'Aria Pulita per i Cieli Blu Il 7 settembre è la giornata Internazionale dell'Aria Pulita per i Cieli Blu: perché è importante ...
06/09/2024 LG inaugura un consorzio in Cina per la ricerca sulle pompe di calore LG lancia un nuovo consorzio in Cina per sviluppare soluzioni HVAC avanzate nelle zone climatiche fredde, ...
06/09/2024 Progetto Rueda Sur: 188 MW di fotovoltaico ed eolico A cura di: Federica Arcadio BayWa r.e. realizzerà in Spagna entro la fine del 2025 Rueda Sur, un importante progetto ibrido, ...